Главная|Решения онлайн |Теория | Основные формулы и обозначения |Обратная связь |


Пример - Табличный симплекс метод

Необходимо решить задачу линейного программирования.

Целевая функция:

2x 1+5x2+3x3+8x4 →min

Ограничивающие условия:

3x1+6x2-4x3+x4≤12
4x1-13x2+10x3+5x4≥6
3x1+7x2+x3≥1

Приведем систему ограничений к каноническому виду, для этого необходимо перейти от неравенств к равенствам, с добавлением дополнительных переменных.

Так как наша задача - задача минимизации, то нам необходимо преобразовать ее к задаче на поиск максимума. Для этого изменим знаки коэффициентов целевой функции на противоположные. Элементы первого неравенства записываем без изменений, добавив в него дополнительную переменную x5 и изменив знак "≤" на "=". Т. к. второе и третье неравенства имеют знаки "≥" необходимо поменять знаки их коэффициентов на противоположные и внести в них дополнительные переменные x6 и x7 соответственно. В результате получем эквивалентную задачу:

3x1+6x2-4x3+x4+x5=12
-4x1+13x2-10x3-5x4+x6=-6
-3x1-7x2-x3+x7=-1

Переходим к формированию исходной симплекс таблицы. В строку F таблицы заносятся коэффициенты целевой функции с противоположным знаком.

x1
x2
x3
x4
Своб член
F
2
5
3
8
0
X5
3
6
-4
1
12
X6
-4
13
-10
-5
-6
X7
-3
-7
-1
0
-1

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -6, он задает ведущую строку - X6. В этой строке так же находим максимальный по модулю отрицательный элемент: -10 он находится в столбце X3 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:

X1X2X6X4Своб член
F0.88.90.36.5-1.8
X54.60.8-0.4314.4
X30.4-1.3-0.10.50.6
X7-2.6-8.3-0.10.5-0.4

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -0.4, он задает ведущую строку - X7. В этой строке так же находим максимальный по модулю отрицательный элемент: -8.3 он находится в столбце X2 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:

X1X7X6X4Своб член
F-1.9881.0720.1937.036-2.229
X54.3490.096-0.413.04814.361
X30.807-0.157-0.0840.4220.663
X20.313 -0.120.012-0.060.048


Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение.В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке F максимальный по модулю отрицательный элемент - это -1.988 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является X2, а ведущий элемент: 0.313.

X2X7X6X4Своб член
F6.3510.310.2696.655-1.924
X5-13.8951.763-0.5773.88213.694
X3-2.5780.152-0.1150.5770.539
X13.195-0.3830.038-0.1920.153


Так как в строке F нет отрицательных элементов, то найдено оптимальное решение. Так как исходной задачей был поиск минимума, то оптимальным решением будет свободный член строки F, взятый с противоположным знаком. F=1.924
при значениях переменных равных: x3=0.539, x1=0.153. Переменные x2 и x4 не входят в базис, поэтому x2=0 x4=0.

Назад



R336709263964 - WebMoney 41001419134483 - Яндекс Деньги
WebMoneyПонравился сайт? Окажите помощь в развитиияндекс