Дано

$$f{left (x right )} = – x^{2} + left|{x}right| – frac{1}{left|{x}right|}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- x^{2} + left|{x}right| – frac{1}{left|{x}right|} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в |x| – 1/|x| – x^2.
$$left|{0}right| – frac{1}{left|{0}right|} – 0$$
Результат:
$$f{left (0 right )} = tilde{infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 1$$
Зн. экстремумы в точках:

(1, -1)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = 1$$
Убывает на промежутках

(-oo, 1]

Возрастает на промежутках

[1, oo)

Вертикальные асимптоты
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty}left(- x^{2} + left|{x}right| – frac{1}{left|{x}right|}right) = -infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции |x| – 1/|x| – x^2, делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{1}{x} left(- x^{2} + left|{x}right| – frac{1}{left|{x}right|}right)right) = infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- x^{2} + left|{x}right| – frac{1}{left|{x}right|} = – x^{2} + left|{x}right| – frac{1}{left|{x}right|}$$
– Да
$$- x^{2} + left|{x}right| – frac{1}{left|{x}right|} = – -1 x^{2} + – left|{x}right| – – frac{1}{left|{x}right|}$$
– Нет
значит, функция
является
чётной
   

Выполненные готовые работы

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
4.78
Vera1611
Быстро и качественно выполняю рефераты, курсовые и контрольные работы, дипломы, пишу эссе, подготавливаю доклады, презентации. Работы выполняю в срок и с соблюдением всех требований заказчика. Опыт в написании работ - 12 лет.