Дано

$$4 x^{2} – 36 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 4$$
$$b = 0$$
$$c = -36$$
, то

D = b^2 – 4 * a * c =

(0)^2 – 4 * (4) * (-36) = 576

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 3$$
$$x_{2} = -3$$

Ответ
$$x_{1} = -3$$

x2 = 3

$$x_{2} = 3$$
Численный ответ

x1 = -3.00000000000000

x2 = 3.00000000000000

Читайте также  (3^2)^4*5^8/15^6
   
4.69
Gian
Пишу быстро и качественно. Процент уникальности текста - высокий. Всегда на связи с заказчиком, весь процесс контролирую до защиты заказчика. Оперативно устраняю ошибки и недочеты в случае их возникновения.