Дано

$$4 x^{2} – 7 x = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 4$$
$$b = -7$$
$$c = 0$$
, то

D = b^2 – 4 * a * c =

(-7)^2 – 4 * (4) * (0) = 49

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = frac{7}{4}$$
$$x_{2} = 0$$

Ответ
$$x_{1} = 0$$

x2 = 7/4

$$x_{2} = frac{7}{4}$$
Численный ответ

x1 = 0.0

x2 = 1.75000000000000

   
4.02
yaraya
Кандидат искусствоведения, педагог с большим практическим опытом работы и значительным опытом написания различных видов работ (дипломные, курсовые, статьи, контрольный, рефераты). - Каждая работа как ребенок... Рождаю, холю, лелею...-