На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x^{2} – 6 x – 27 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = -6$$
$$c = -27$$
, то

D = b^2 – 4 * a * c =

(-6)^2 – 4 * (1) * (-27) = 144

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 9$$
$$x_{2} = -3$$

Ответ
$$x_{1} = -3$$

x2 = 9

$$x_{2} = 9$$
Численный ответ

x1 = -3.00000000000000

x2 = 9.00000000000000

   
5.0
studplus5
Курсовые, контрольные, рефераты, отчеты по практике быстро и качественно, без плагиата. Ответственный подход, соответствие всем требованиям.Выполнила более 500 дипломов и 1000 курсовых. Это основной вид деятельности уже 12 лет. Обращайтесь!