На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$0 = b + 2 k$$

-1 = 3*k + b

$$-1 = b + 3 k$$
Подробное решение
Дана система ур-ний
$$0 = b + 2 k$$
$$-1 = b + 3 k$$

Из 1-го ур-ния выразим b
$$0 = b + 2 k$$
Перенесем слагаемое с переменной b из правой части в левую со сменой знака
$$- b = 2 k$$
$$- b = 2 k$$
Разделим обе части ур-ния на множитель при b
$$frac{-1 b}{-1} = frac{2 k}{-1}$$
$$b = – 2 k$$
Подставим найденное b в 2-е ур-ние
$$-1 = b + 3 k$$
Получим:
$$-1 = – 2 k + 3 k$$
$$-1 = k$$
Перенесем слагаемое с переменной k из правой части в левую со сменой знака
$$- k – 1 = 0$$
$$- k – 1 = 0$$
Перенесем свободное слагаемое -1 из левой части в правую со сменой знака
$$- k = 1$$
$$- k = 1$$
Разделим обе части ур-ния на множитель при k
$$frac{-1 k}{-1 k} = frac{1}{-1 k}$$
$$frac{1}{k} = -1$$
Т.к.
$$b = – 2 k$$
то
$$b = – -2$$
$$b = 2$$

Ответ:
$$b = 2$$
$$frac{1}{k} = -1$$

Ответ
$$k_{1} = -1$$
=
$$-1$$
=

-1

$$b_{1} = 2$$
=
$$2$$
=

2

Метод Крамера
$$0 = b + 2 k$$
$$-1 = b + 3 k$$

Приведём систему ур-ний к каноническому виду
$$- b – 2 k = 0$$
$$- b – 3 k = 1$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}- x_{1} – 2 x_{2} – x_{1} – 3 x_{2}end{matrix}right] = left[begin{matrix}01end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}-1 & -2 -1 & -3end{matrix}right] right )} = 1$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = {det}{left (left[begin{matrix}0 & -21 & -3end{matrix}right] right )} = 2$$
$$x_{2} = {det}{left (left[begin{matrix}-1 & 0 -1 & 1end{matrix}right] right )} = -1$$

Метод Гаусса
Дана система ур-ний
$$0 = b + 2 k$$
$$-1 = b + 3 k$$

Приведём систему ур-ний к каноническому виду
$$- b – 2 k = 0$$
$$- b – 3 k = 1$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}-1 & -2 & 0 -1 & -3 & 1end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}-1 -1end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}-1 & -2 & 0end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}0 & -1 & 1end{matrix}right] = left[begin{matrix}0 & -1 & 1end{matrix}right]$$
получаем
$$left[begin{matrix}-1 & -2 & 0 & -1 & 1end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}-2 -1end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & -1 & 1end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}-1 & 0 & -2end{matrix}right] = left[begin{matrix}-1 & 0 & -2end{matrix}right]$$
получаем
$$left[begin{matrix}-1 & 0 & -2 & -1 & 1end{matrix}right]$$

Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$- x_{1} + 2 = 0$$
$$- x_{2} – 1 = 0$$
Получаем ответ:
$$x_{1} = 2$$
$$x_{2} = -1$$

Численный ответ

b1 = 2.00000000000000
k1 = -1.00000000000000

   
4.34
Nataliafffff
Специализируюсь на решении задач, выполнении контрольных работ, написании рефератов и курсовых.