На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
2 2
x + y = a
=
$$- sqrt{- sqrt{y^{4} + 10 y^{2} + 1} + 5}$$
=
-(5 – (1 + y^4 + 10*y^2)^0.5)^0.5
$$a_{1} = y^{2} – sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
$$y^{2} – sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
5 + y^2 – (1 + y^4 + 10*y^2)^0.5
=
$$sqrt{- sqrt{y^{4} + 10 y^{2} + 1} + 5}$$
=
(5 – (1 + y^4 + 10*y^2)^0.5)^0.5
$$a_{2} = y^{2} – sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
$$y^{2} – sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
5 + y^2 – (1 + y^4 + 10*y^2)^0.5
=
$$- sqrt{sqrt{y^{4} + 10 y^{2} + 1} + 5}$$
=
-(5 + (1 + y^4 + 10*y^2)^0.5)^0.5
$$a_{3} = y^{2} + sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
$$y^{2} + sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
5 + y^2 + (1 + y^4 + 10*y^2)^0.5
=
$$sqrt{sqrt{y^{4} + 10 y^{2} + 1} + 5}$$
=
(5 + (1 + y^4 + 10*y^2)^0.5)^0.5
$$a_{4} = y^{2} + sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
$$y^{2} + sqrt{y^{4} + 10 y^{2} + 1} + 5$$
=
5 + y^2 + (1 + y^4 + 10*y^2)^0.5