На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$f{left (x right )} = frac{1}{sqrt{x} + 1}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$frac{1}{sqrt{x} + 1} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 1/(sqrt(x) + 1).
$$frac{1}{sqrt{0} + 1}$$
Результат:
$$f{left (0 right )} = 1$$
Точка:

(0, 1)

Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = frac{1}{9}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на всей числовой оси

Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty} frac{1}{sqrt{x} + 1} = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 1/(sqrt(x) + 1), делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{1}{x left(sqrt{x} + 1right)}right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$frac{1}{sqrt{x} + 1} = frac{1}{sqrt{- x} + 1}$$
– Нет
$$frac{1}{sqrt{x} + 1} = – frac{1}{sqrt{- x} + 1}$$
– Нет
значит, функция
не является
ни чётной ни нечётной
   
5.0
Iri5
Опыт выполнения студенческих работ с 2005 года. Юриспруденциия (контрольные, рефераты, курсовые, дипломные работы, отчеты по практике, задачи по всем отраслям права). Психология (рефераты, контрольные, эссе, курсовые).