На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$f{left (x right )} = sqrt{- x^{2}}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$sqrt{- x^{2}} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$

Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в sqrt(-x^2).
$$sqrt{- 0}$$
Результат:
$$f{left (0 right )} = 0$$
Точка:

(0, 0)

Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty} sqrt{- x^{2}} = infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = infty i$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(-x^2), делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{i left|{x}right|}{x}right) = – i$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = i x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$sqrt{- x^{2}} = sqrt{- x^{2}}$$
– Да
$$sqrt{- x^{2}} = – i left|{x}right|$$
– Нет
значит, функция
является
чётной
   
5.0
Lana0707
Окончила юридический факультет, гражданско-правовая специализация. Выполняю курсовые и дипломные работы, рефераты, доклады, контрольные, семинарские задания и т.д.