На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
Дано
$$x_{2} – y_{2} = 3$$
x – y = 3
$$x – y = 3$$
Ответ
$$x_{1} = y + 3$$
=
$$y + 3$$
=
=
$$y + 3$$
=
3 + y
$$x_{21} = y_{2} + 3$$
=
$$y_{2} + 3$$
=
3 + y2
Метод Гаусса
Дана система ур-ний
$$x_{2} – y_{2} = 3$$
$$x – y = 3$$
$$x_{2} – y_{2} = 3$$
$$x – y = 3$$
Приведём систему ур-ний к каноническому виду
$$x_{2} – y_{2} = 3$$
$$x – y = 3$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}0 & 1 & 0 & -1 & 31 & 0 & -1 & 0 & 3end{matrix}right]$$
Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$x_{2} – x_{4} – 3 = 0$$
$$x_{1} – x_{3} – 3 = 0$$
Получаем ответ:
$$x_{2} = x_{4} + 3$$
$$x_{1} = x_{3} + 3$$
где x3, x4 – свободные переменные