На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$2 sin^{2}{left (x right )} + 3 cos{left (x right )} – 3 = 0$$
преобразуем
$$3 cos{left (x right )} – cos{left (2 x right )} – 2 = 0$$
$$- 2 cos^{2}{left (x right )} + 3 cos{left (x right )} – 1 = 0$$
Сделаем замену
$$w = cos{left (x right )}$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = frac{sqrt{D} – b}{2 a}$$
$$w_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = -2$$
$$b = 3$$
$$c = -1$$
, то
D = b^2 – 4 * a * c =
(3)^2 – 4 * (-2) * (-1) = 1
Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b – sqrt(D)) / (2*a)
или
$$w_{1} = frac{1}{2}$$
$$w_{2} = 1$$
делаем обратную замену
$$cos{left (x right )} = w$$
Дано уравнение
$$cos{left (x right )} = w$$
– это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = pi n + {acos}{left (w right )}$$
$$x = pi n + {acos}{left (w right )} – pi$$
Или
$$x = pi n + {acos}{left (w right )}$$
$$x = pi n + {acos}{left (w right )} – pi$$
, где n – любое целое число
подставляем w:
$$x_{1} = pi n + {acos}{left (w_{1} right )}$$
$$x_{1} = pi n + {acos}{left (frac{1}{2} right )}$$
$$x_{1} = pi n + frac{pi}{3}$$
$$x_{2} = pi n + {acos}{left (w_{2} right )}$$
$$x_{2} = pi n + {acos}{left (1 right )}$$
$$x_{2} = pi n$$
$$x_{3} = pi n + {acos}{left (w_{1} right )} – pi$$
$$x_{3} = pi n – pi + {acos}{left (frac{1}{2} right )}$$
$$x_{3} = pi n – frac{2 pi}{3}$$
$$x_{4} = pi n + {acos}{left (w_{2} right )} – pi$$
$$x_{4} = pi n – pi + {acos}{left (1 right )}$$
$$x_{4} = pi n – pi$$
-pi
x2 = —-
3
pi
x3 = —
3
x1 = -89.0117918517000
x2 = -36.6519142919000
x3 = -50.2654823283000
x4 = 113.097336365000
x5 = 43.9822971693000
x6 = 42.9350995991000
x7 = 126.710903695000
x8 = -86.9173967493000
x9 = 50.2654824464000
x10 = 7.33038285838000
x11 = 63.8790506230000
x12 = 36.6519142919000
x13 = 26.1799387799000
x14 = 93.2005820565000
x15 = 49.2182849062000
x16 = 32.4631240871000
x17 = 68.0678408278000
x18 = 55.5014702134000
x19 = 12.5663704907000
x20 = -31.4159266584000
x21 = 95.2949771589000
x22 = 6.28318528439000
x23 = -19.8967534727000
x24 = -95.2949771589000
x25 = 87.9645943353000
x26 = 56.5486676413000
x27 = 17.8023583703000
x28 = 145.560459616000
x29 = -55.5014702134000
x30 = 1.04719755120000
x31 = -13.6135681656000
x32 = -87.9645943593000
x33 = 37.6991119735000
x34 = -13691.0607854000
x35 = -69.1150383715000
x36 = -61.7846555206000
x37 = -25.1327426220000
x38 = 13.6135681656000
x39 = -32.4631240871000
x40 = 57.5958653158000
x41 = -182.212372565000
x42 = 99.4837673637000
x43 = -1.04719755120000
x44 = 45.0294947015000
x45 = -93.2005820565000
x46 = 19.8967534727000
x47 = 0.0
x48 = 30.3687289847000
x49 = -17.8023583703000
x50 = -68.0678408278000
x51 = -57.5958653158000
x52 = -63.8790506230000
x53 = -45.0294947015000
x54 = 82.7286065445000
x55 = 100.530964793000
x56 = -80.6342114421000
x57 = 100.530964914000
x58 = -37.6991118768000
x59 = -43.9822971747000
x60 = -82.7286065445000
x61 = -12.5663692278000
x62 = -11.5191730632000
x63 = -94.2477794807000
x64 = -49.2182849062000
x65 = 51.3126800086000
x66 = -42.9350995991000
x67 = -24.0855436775000
x68 = -5.23598775598000
x69 = 70.1622359302000
x70 = 11.5191730632000
x71 = 94.2477796094000
x72 = 86.9173967493000
x73 = -30.3687289847000
x74 = 74.3510261350000
x75 = -38.7463093943000
x76 = 38.7463093943000
x77 = -51.3126800086000
x78 = -75.3982238055000
x79 = 61.7846555206000
x80 = -76.4454212374000
x81 = -81.6814090373000
x82 = -6.28318517680000
x83 = 62.8318525640000
x84 = -99.4837673637000
x85 = 81.6814091226000
x86 = 24.0855436775000
x87 = 5.23598775598000
x88 = 80.6342114421000
x89 = -7.33038285838000
x90 = 89.0117918517000
x91 = -74.3510261350000