На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$4 cos{left (x right )} + 5 cos{left (2 x right )} – 1 = 0$$
преобразуем
$$10 cos^{2}{left (x right )} + 4 cos{left (x right )} – 6 = 0$$
$$10 cos^{2}{left (x right )} + 4 cos{left (x right )} – 6 = 0$$
Сделаем замену
$$w = cos{left (x right )}$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = frac{sqrt{D} – b}{2 a}$$
$$w_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 10$$
$$b = 4$$
$$c = -6$$
, то
D = b^2 – 4 * a * c =
(4)^2 – 4 * (10) * (-6) = 256
Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b – sqrt(D)) / (2*a)
или
$$w_{1} = frac{3}{5}$$
$$w_{2} = -1$$
делаем обратную замену
$$cos{left (x right )} = w$$
Дано уравнение
$$cos{left (x right )} = w$$
– это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = pi n + {acos}{left (w right )}$$
$$x = pi n + {acos}{left (w right )} – pi$$
Или
$$x = pi n + {acos}{left (w right )}$$
$$x = pi n + {acos}{left (w right )} – pi$$
, где n – любое целое число
подставляем w:
$$x_{1} = pi n + {acos}{left (w_{1} right )}$$
$$x_{1} = pi n + {acos}{left (frac{3}{5} right )}$$
$$x_{1} = pi n + {acos}{left (frac{3}{5} right )}$$
$$x_{2} = pi n + {acos}{left (w_{2} right )}$$
$$x_{2} = pi n + {acos}{left (-1 right )}$$
$$x_{2} = pi n + pi$$
$$x_{3} = pi n + {acos}{left (w_{1} right )} – pi$$
$$x_{3} = pi n – pi + {acos}{left (frac{3}{5} right )}$$
$$x_{3} = pi n – pi + {acos}{left (frac{3}{5} right )}$$
$$x_{4} = pi n + {acos}{left (w_{2} right )} – pi$$
$$x_{4} = pi n – pi + {acos}{left (-1 right )}$$
$$x_{4} = pi n$$
/3 4*I
x2 = -I*log|- – —|
5 5 /
/3 4*I
x3 = -I*log|- + —|
5 5 /
x1 = 74.4709284682000
x2 = -99.6036696969000
x3 = 3.14159259002000
x4 = -68.1877431610000
x5 = -82.6087042113000
x6 = -26.0600364467000
x7 = -15.7079632965000
x8 = 78.5398161898000
x9 = -40.8407045201000
x10 = 17.9222607035000
x11 = -17.9222607035000
x12 = 13.4936658324000
x13 = -72.2566308763000
x14 = -11.6390753964000
x15 = 9.42477819298000
x16 = -93.3204843897000
x17 = 91.1061868320000
x18 = 68.1877431610000
x19 = -78.5398161101000
x20 = -40.8407045022000
x21 = 40.8407042720000
x22 = 61.9045578538000
x23 = -63.7591482898000
x24 = -49.3381872394000
x25 = -5.35589008918000
x26 = 308.803375270000
x27 = -70.0423335970000
x28 = 38.6264070611000
x29 = -57.4759629826000
x30 = 57.4759629826000
x31 = 84.8230014236000
x32 = 91.1061870131000
x33 = 11.6390753964000
x34 = -38.6264070611000
x35 = 99.6036696969000
x36 = -91.1061871795000
x37 = -24.2054460107000
x38 = 59.6902605943000
x39 = -97.3893724368000
x40 = 36.7718166251000
x41 = 15.7079634377000
x42 = -76.3255189042000
x43 = 40.8407045618000
x44 = 72.2566310277000
x45 = 63.7591482898000
x46 = -84.8230014876000
x47 = -55.6213725466000
x48 = -30.4886313179000
x49 = -32.3432217539000
x50 = 82.6087042113000
x51 = 47.1238898961000
x52 = -53.4070752806000
x53 = 26.0600364467000
x54 = 32.3432217539000
x55 = 80.7541137753000
x56 = 126.591001362000
x57 = -21.9911485865000
x58 = 47.1238897080000
x59 = 65.9734457529000
x60 = -13.4936658324000
x61 = -61.9045578538000
x62 = 24.2054460107000
x63 = 3.14159277279000
x64 = -47.1238900296000
x65 = 70.0423335970000
x66 = -9.42477812402000
x67 = -34.5575189583000
x68 = 34.5575190328000
x69 = -28.2743337192000
x70 = -65.9734457650000
x71 = -3.14159287911000
x72 = 30.4886313179000
x73 = 19.7768511395000
x74 = -59.6902604576000
x75 = 76.3255189042000
x76 = -40.8407043554000
x77 = -84.8230016204000
x78 = 47.1238897529000
x79 = -74.4709284682000
x80 = 21.9911485852000
x81 = 28.2743338652000
x82 = -19.7768511395000
x83 = -51.1927776754000
x84 = 55.6213725466000
x85 = 97.3893724940000
x86 = 53.4070753438000
x87 = -7.21048052518000