На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$7 x^{2} – 12 x + 5 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 7$$
$$b = -12$$
$$c = 5$$
, то

D = b^2 – 4 * a * c =

(-12)^2 – 4 * (7) * (5) = 4

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 1$$
$$x_{2} = frac{5}{7}$$

Ответ
$$x_{1} = frac{5}{7}$$

x2 = 1

$$x_{2} = 1$$
Численный ответ

x1 = 1.00000000000000

x2 = 0.714285714286000

   
4.93
светланамихайловна
Образование оконченное высшее. Большой опыт в написании контрольных работ, курсовых и рефератов (по различным предметам). Буду рада сотрудничеству!