Дано
$$frac{log{left (frac{277 frac{1}{x}}{1000} right )}}{log{left (10 right )}}$$
Подстановка условия
$$frac{log{left (frac{277 frac{1}{x}}{1000} right )}}{log{left (10 right )}}$$
log((277/(-3))/1000)/log(10)
$$frac{log{left (frac{277 frac{1}{(-3)}}{1000} right )}}{log{left (10 right )}}$$
log((277/(-3))/1000)/log(10)
$$frac{log{left (frac{277 frac{1}{-3}}{1000} right )}}{log{left (10 right )}}$$
(-log(3000) + pi*i + log(277))/log(10)
$$frac{1}{log{left (10 right )}} left(- log{left (3000 right )} + log{left (277 right )} + i piright)$$
Степени
$$frac{log{left (frac{277}{1000 x} right )}}{log{left (10 right )}}$$
Численный ответ
0.434294481903252*log((277/x)/1000)
Рациональный знаменатель
$$frac{log{left (frac{277}{1000 x} right )}}{log{left (10 right )}}$$
Объединение рациональных выражений
$$frac{log{left (frac{277}{1000 x} right )}}{log{left (10 right )}}$$
Общее упрощение
/ 277
log|——|
1000*x/
———–
log(10)
$$frac{log{left (frac{277}{1000 x} right )}}{log{left (10 right )}}$$
Соберем выражение
$$frac{log{left (frac{277}{1000 x} right )}}{log{left (10 right )}}$$
Общий знаменатель
/1
log(277) + log|-|
x/
-3 + —————–
log(10)
$$frac{1}{log{left (10 right )}} left(log{left (frac{1}{x} right )} + log{left (277 right )}right) – 3$$
Комбинаторика
/1
-3*log(10) + log(277) + log|-|
x/
——————————
log(10)
$$frac{1}{log{left (10 right )}} left(log{left (frac{1}{x} right )} – 3 log{left (10 right )} + log{left (277 right )}right)$$
Раскрыть выражение
-log(1000) – log(x) + log(277)
——————————
log(10)
$$frac{1}{log{left (10 right )}} left(- log{left (x right )} – log{left (1000 right )} + log{left (277 right )}right)$$