Дано
$$e^{x} + x = c + y + e^{- y}$$
Ответ
/// / / -y / / / -y / / / / -y / / / -y // / / -y / / / -y / / / / -y / / / -y
||| | | c + y + e || | re(y) | | | c + y + e || | re(y) | -re(y) | | | | c + y + e || | re(y) | | | c + y + e || | re(y) | -re(y) | || | | c + y + e || | re(y) | | | c + y + e || | re(y) | -re(y) | | | | c + y + e || | re(y) | | | c + y + e || | re(y) | -re(y)
x1 = I* – imLambertWe // + im(c) + im(y)/*cos(im(y))*e + – reLambertWe // + re(c) + re(y)/*e *sin(im(y))/*cos(im(y))*e – 1 + – reLambertWe // + re(c) + re(y)/*cos(im(y))*e – – imLambertWe // + im(c) + im(y)/*e *sin(im(y))/*e *sin(im(y))/ + – imLambertWe // + im(c) + im(y)/*cos(im(y))*e + – reLambertWe // + re(c) + re(y)/*e *sin(im(y))/*e *sin(im(y)) + 1 + – reLambertWe // + re(c) + re(y)/*cos(im(y))*e – – imLambertWe // + im(c) + im(y)/*e *sin(im(y))/*cos(im(y))*e
$$x_{1} = i left(left(left(Re{c} + Re{y} – Re{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} sin{left (Im{y} right )} + left(Im{c} + Im{y} – Im{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} cos{left (Im{y} right )}right) e^{- Re{y}} cos{left (Im{y} right )} – left(left(Re{c} + Re{y} – Re{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} cos{left (Im{y} right )} – left(Im{c} + Im{y} – Im{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} sin{left (Im{y} right )} + 1right) e^{- Re{y}} sin{left (Im{y} right )}right) + left(left(Re{c} + Re{y} – Re{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} sin{left (Im{y} right )} + left(Im{c} + Im{y} – Im{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} cos{left (Im{y} right )}right) e^{- Re{y}} sin{left (Im{y} right )} + left(left(Re{c} + Re{y} – Re{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} cos{left (Im{y} right )} – left(Im{c} + Im{y} – Im{left({Lambertw}{left (e^{c + y + e^{- y}} right )}right)}right) e^{Re{y}} sin{left (Im{y} right )} + 1right) e^{- Re{y}} cos{left (Im{y} right )}$$