Дано

$$x^{2} – 12 x = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = -12$$
$$c = 0$$
, то

D = b^2 – 4 * a * c =

(-12)^2 – 4 * (1) * (0) = 144

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 12$$
$$x_{2} = 0$$

Ответ
$$x_{1} = 0$$

x2 = 12

$$x_{2} = 12$$
Численный ответ

x1 = 0.0

x2 = 12.0000000000000

   

Выполненные готовые работы

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
4.22
Merar
Если Вам нужно выполнить контрольную или курсовую работу по экономическому предмету - можете положиться на меня! 88% моих работ получают оценку "отлично", заказчики которые убедились в этом являются моими постоянными клиентами по всему СНГ.