Дано

$$x^{2} + 18 = 9 x$$
Подробное решение
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.

Уравнение превратится из
$$x^{2} + 18 = 9 x$$
в
$$- 9 x + x^{2} + 18 = 0$$
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = -9$$
$$c = 18$$
, то

D = b^2 – 4 * a * c =

(-9)^2 – 4 * (1) * (18) = 9

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 6$$
$$x_{2} = 3$$

Ответ
$$x_{1} = 3$$

x2 = 6

$$x_{2} = 6$$
Численный ответ

x1 = 6.00000000000000

x2 = 3.00000000000000

   

Выполненные готовые работы

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
4.33
Andrej4695
Закончил Пензенский государственный университет в 2017 году, в данный момент учусь в магистратуре юридического факультета. Занимаюсь выполнением рефератов, курсовых и контрольных работ 5 лет. Готов Вам помочь получить хорошую оценку!