На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x^{2} + 2 x – 168 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = 2$$
$$c = -168$$
, то

D = b^2 – 4 * a * c =

(2)^2 – 4 * (1) * (-168) = 676

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 12$$
$$x_{2} = -14$$

Ответ
$$x_{1} = -14$$

x2 = 12

$$x_{2} = 12$$
Численный ответ

x1 = -14.0000000000000

x2 = 12.0000000000000

   
4.97
LVKva
Выполню работу качественно и в срок! Есть опыт в написании работ (рефератов, докладов, курсовых, контрольных) в гуманитарной сфере. История, социология, политология. Образование: социально-исторический факультет ЮФУ. Отделение -социология