На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = 1$$
$$c = 3$$
, то
D = b^2 – 4 * a * c =
(1)^2 – 4 * (1) * (3) = -11
Т.к. D < 0, то уравнение
не имеет вещественных корней,
но комплексные корни имеются.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b – sqrt(D)) / (2*a)
или
$$x_{1} = – frac{1}{2} + frac{sqrt{11} i}{2}$$
$$x_{2} = – frac{1}{2} – frac{sqrt{11} i}{2}$$
____
1 I*/ 11
x2 = – – + ——–
2 2
x1 = -0.5 – 1.65831239518*i
x2 = -0.5 + 1.65831239518*i
Купить уже готовую работу
Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.