Для упрощения процесса решения исходные данные задачи линейного программирования при решении ее симплекс методом записываются в специальные симплекс-таблицы. Поэтому одна из модификаций симплекс метода получила название табличный симплекс метод. Задача линейного программирования в каноническом виде:
F=a0,1x1+a0,2x2+…a0,nxn +b0 → max
a1,1x1+a1,2x2+…a1,nxn + xn+1=b1
a2,1x1+a2,2x2+…a2,nxn +xn+2 =b2
…………………………………
am,1x1+am,2x2+…am,nxn+xn+m=bm
Исходная таблица для задачи имеет следующий вид:

x1 x2 xn-1 xn b
F -a0,1 -a0,2 -a0,n-1 -a0,n -b0
xn+1 a1,1 a1,2 a1,n-1 a1,n b1
xn+2 a2,1 a2,2 a2,n-1 a2,n b2
xn+m am,1 am,2 am,n-1 am,n bm

x1, x2, xn – исходные переменные, xn+1, xn+2, xn+m – дополнительные переменные. Все дополнительные переменные мы приняли как базисные, а исходные переменные как небазисные (дополнительные записаны в первый столбец симплекс-таблицы а исходные в первую строку). При каждой итерации элементы симплекс-таблицы пересчитывают по определенным правилам.

  Алгоритм симплекс-метода.

 Подготовительный этап
Приводим задачу ЛП  к каноническому виду
F=a0,1x1+a0,2x2+…a0,nxn +b0 → max
a1,1x1+a1,2x2+…a1,nxn+xn+1=b1
a2,1x1+a2,2x2+…a2,nxn+xn+2=b2
…………………………………
am,1x1+am,2x2+…am,nxn+xn+m=bm
В случае если в исходной задаче необходимо найти минимум – знаки коэффициентов целевой функции F меняются на противоположные a0,n=-a0,n. Знаки коэффициентов ограничивающих условий со знаком “≥” так же меняются на противоположные. В случае если условие содержит знак “≤” – коэффициенты запишутся без изменений.

 Шаг 0. Составляем симплексную таблицу, соответствующую исходной задаче

x1 x2 xn-1 xn b
F -a0,1 -a0,2 -a0,n-1 -a0,n -b0
xn+1 a1,1 a1,2 a1,n-1 a1,n b1
xn+2 a2,1 a2,2 a2,n-1 a2,n b2
xn+m am,1 am,2 am,n-1 am,n bm

 Шаг 1. Проверка на допустимость.

Проверяем на положительность элементы столбца b (свободные члены), если среди них нет отрицательных то найдено допустимое решение (решение соответствующее одной из вершин многогранника условий) и мы переходим к шагу 2. Если в столбце свободных членов имеются отрицательные элементы то выбираем среди них максимальный по модулю – он задает ведущую строку k. В этой строке так же находим максимальный по модулю отрицательный элемент ak,l – он задает ведущий столбец – l и является ведущим элементом. Переменная, соответствующая ведущей строке исключается из базиса, переменная соответствующая ведущему столбцу включается в базис. Пересчитываем симплекс-таблицу согласно правилам.
Если же среди свободных членов есть отрицательные элементы – а в соответствующей строке – нет то условия задачи несовместны и решений у нее нет.
Если после перерасчета в столбце свободных членов остались отрицаетельные элементы, то переходим к первому шагу, если таких нет, то ко второму.
Шаг 2. Проверка на оптимальность.
На предыдущем этапе найдено допустимое решение. Проверим его на оптимальность Если среди элементов симплексной таблицы, находщихся в строке F (не беря в расчет элемент b0 – текущее значение целевой функции) нет отрицательных, то найдено оптимальное решение.
Если в строке F есть отрицательные элементы то решение требует улучшения. Выбираем среди отрицательных элементов строки F максимальный по модулю (исключая значение функции b0)

a0,l=min{a0,i }

l – столбец в котором он находится будет ведущим. Для того, что бы найти ведущую строку, находим отношение соответсвующего свободного члена и элемента из ведущего столбца, при условии, что они неотрицательны.

bk/ak,l =min {bi/ai,l } при ai,l>0, bi>0

k – cтрока, для которой это отношение минимально – ведущая. Элемент ak,l – ведущий (разрешающий). Переменная, соответствующая ведущей строке (xk) исключается из базиса, переменная соответствующая ведущему столбцу (xl) включается в базис.

Пересчитываем симплекс-таблицу по формулам. Если в новой таблице после перерасчета в строке F остались отрицательные элементы переходим к шагу 2

Если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена – алгоритм завершает работу.

Если в строке F и в столбце свободных членов все элементы положительные, то найдено оптимальное решение.

Правила преобразований симплексной таблицы.
При составлении новой симплекс-таблицы в ней происходят следующие изменения:

    • Вместо базисной переменной xk записываем xl; вместо небазисной переменной xl записываем xk.
    • ведущий элемент заменяется на обратную величину ak,l‘= 1/ak,l
    • все элементы ведущего столбца (кроме ak,l) умножаются на -1/ak,l
    • все элементы ведущей строки (кроме ak,l) умножаются на 1/ak,l
    • оставшиеся элементы симплекс-таблицы преобразуются по формуле ai,j‘= ai,j– ai,lx ak,j/ ak,l

Схему преобразования элементов симплекс-таблицы (кроме ведущей строки и ведущего столбца) называют схемой ”прямоугольника”.
схема прямоугольника
Преобразуемый элемент ai,j и соответствующие ему три сомножителя как раз и являются вершинами ”прямоугольника”.

Пример

   

Выполненные готовые работы

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
4.24
user2235229
Я Екатерина - специалист в области права и смежных наук! Имею опыт в подготовке контрольных, творческих и курсовых работ! Окажу любую помощь в выполнении ваших работ!!!