Стоимость: 290 руб.

Содержание

Введение

1.1Основные тренды по интенсификации процессов в теплообменных аппаратах

1.3 Спиральные теплообменники

1.4 Интенсификация процесса в кожухотрубных теплообменниках

1.6 Интенсификация в пластинчатых теплообменниках

2.1 Инновационность технологии интенсификации теплообмена в ТТАИ

2.2 Описание базовой технологии интенсификации процессов в ТТАИ


Нужна такая же работа?

Оставь заявку и получи бесплатный расчет

Несколько простых шагов

Оставьте бесплатную заявку. Требуется только e-mail, не будет никаких звонков

Получайте предложения от авторов

Выбирете понравившегося автора

Получите готовую работу по электронной почте

Стоимость: 290 руб.

На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Введение
Актуальность работы. Теплообменные аппараты имеют чрезвычайно широкое применение (трудно найти область человеческой деятельности, где бы не требовалось что-то охлаждать или нагревать). В теплоэнергетике (как в большой, так и в коммунальной), в нефте-газохимической отрасли, в пищевой промышленности, в машиностроении и ряде других отраслей наиболее широкое применение находят два типа теплообменников – кожухотрубные и пластинчатые. При этом кожухотрубные аппараты для ряда задач обладают набором очевидных преимуществ перед пластинчатыми аппаратами, однако подавляющее большинство конструкций кожухотрубных аппаратов заметно проигрывают в массе (т.е. по металлоемкости) пластинчатым аппаратам. Одним из методов повышения эффективности теплообменных процессов является использование современных теплообменных аппаратов.

1.1Основные тренды по интенсификации процессов в теплообменных аппаратах
Задачи интенсификации процесса теплообмена и создания высокоэффективных теплообменных аппаратов стала весьма актуальной в современной энергетике. В ряде случаев Трудность достижения эффективного теплообменного аппаратов для энергетических установок заключается не только в достижении высоких теплоаэродинамических показателей [3-14].
Помимо сохранения этих показателей теплообменные аппараты должны быть надежными в эксплуатации, просты по конструкции, технологичны в изготовлении и иметь небольшую стоимость. Возможность изготовления теплообменной аппаратуры из дешевых материалов с применением современных высокопроизводительных процессов является весьма важной.
Задачи интенсификации теплообмена обычно сводятся:
-к уменьшению габаритов и массы теплообменных устройств,
-к снижению температурного напора, т. е.

1.3 Спиральные теплообменники
Спиральные теплообменники получили широкое распространение в промышленности, что объясняется рядом их преимуществ по сравнению с теплообменниками других типов. Спиральные теплообменники компактны, их конструкция предусматривает возможность полного противотока. Площадь поперечного сечения каналов по всей длине остается неизменной, и поток не имеет резких изменений направлений, благодаря чему загрязнение поверхности спиральных теплообменников меньше, чем у аппаратов других типов. Эти теплообменники позволяют обеспечить надежную теплопередачу между средами, содержащими твердые включения.
Спиральный теплообменник (рис.1) представляет собой два спиральных канала, свернутых из рулонного металла вокруг центральной разделительной перегородки.

Рис.

1.4 Интенсификация процесса в кожухотрубных теплообменниках
Кожухотрубные аппараты представляют собой набор труб, размещённых в круглом кожухе. Основным их недостатком является невозможность достижения высоких значений коэффициентов теплоотдачи при низких скоростях течения теплоносителей из-за недостаточно развитой площади поверхности теплообмена. Поэтому они не могут конкурировать с пластинчатыми теплообменными аппаратами, когда требуется передавать большие тепловые потоки при малых температурных напорах.
Турбулизация потока реализуется за счет образования на трубах плавных выступов – турбулизаторов. Увеличение теплообмена в данном случае достигается за счет разрушения пограничного слоя. Турбулизаторы создают вихревые зоны в пограничном слое, что приводит к его уменьшению. Высота турбулизаторов выполняется равной толщине пограничного слоя.

Рис.2 Труба с кольцевыми турбулизаторами
Из таких труб (рис.2) изготавливаются кожухотрубчатые теплообменники.

1.6 Интенсификация в пластинчатых теплообменниках
Стремление интенсифицировать процессы конвективного теплообмена и создать наиболее технологичные в изготовлении и экономичные теплообменные аппараты привело в последние годы к быстрому совершенствованию конструкций теплообменных аппаратов, изготовленных из листов: пластинчатых, пластинчато-ребристых, ламельных и спиральных. Определяющей особенностью устройства пластинчатых теплообменных аппаратов является конструкция и форма поверхности теплообмена и каналов для рабочей среды. Поверхность теплообмена образуется из отдельных пластин, а каналы для рабочей среды имеют щелевидную форму. Рабочая среда движется у поверхности теплообмена тонким слоем, что способствует интенсификации процесса теплоотдачи.

2.1 Инновационность технологии интенсификации теплообмена в ТТАИ
Общепринятый на сегодня подход к решению проблемы интенсификации конвективного теплообмена (в однофазных средах) заключается в турбулизации пристенных слоев жидкости разными способами, в том числе и профилированием каналов течения теплообменных потоков, с целью увеличения коэффициента переноса тепла на стенку канала. предполагается выполнение комплекса научно-исследовательских и опытно-конструкторских работ, включающих как теоретические, так и натурные стендовые исследования. В ходе теоретических исследований будут намечены наиболее целесообразные методы повышения эффективности теплопередачи в кожухотрубных теплообменных аппаратах с ориентацией на их совместное применение с уже имеющимися достижениями по тепловой эффективности в аппаратах ТТАИ.

Узнайте сколько будет стоить выполнение вашей работы

   

Список использованной литературы

  1. Нормативные акты
  2. 1. ГОСТ 15518-87 Аппараты теплообменные пластинчатые.
  3. 2. ГОСТ 27590-2005 Подогреватели кожухотрубные водо-водяные систем теплоснабжения.
  4. Академическая литература
  5. 3. Барон В.Г. Теплообменные аппараты типа ТТАИ и специфические особенности индивидуальных тепловых пунктов. «Новости теплоснабжения» №10 , 2000 г. Москва
  6. 4. Барон В.Г. Планшетные теплопункты – новая идеология создания ИТП. «С.О.К.», г.Киев, №5,2005г,
  7. 5. Барон В.Г. Горячее водоснабжение объектов с явно выраженной неравномерностью водопотребления – пора решать проблему оптимально. Новости теплоснабжения, №5, 2005 г. Москва
  8. 6. Берлин Ал.Ал., Минскер К.С., Дюмаев К.М. Новые унифицированные энерго- и ресурсосберегающие высокопроизводительные технологии повышенной экологической чистоты на основе трубчатых турбулентных реакторов. М.: ОАО «НИИТЭХИМ», 1996.
  9. 7. Головачев В.Л., Марголин Г.А., Пугач В.В. Промышленная кожухотрубчатая теплообменная аппаратура. Справочник каталог. Вниинефтемаш. М.: Интэк Лтд., 1992.
  10. 8. Гортышов Ю.Ф., Олимпиев В.В., Попов И.А. Эффективность промышленно перспективных интенсификаторов теплоотдачи (Обзор. Анализ. Рекомендации) // Изв. АН. Энергетика. 2002. № 3. С. 102.
  11. 9. Гершкович В.Ф. Системы отопления со ступенчатой регенерацией теплоты. Изд. «Будівельник», Киев-1990.
  12. 10. Дзюбенко Б.В., Кузма-Кичта Ю.А., Леонтьев А.И. и др. Интенсификация тепло и массообмена на макро, микро и наномасштабах. М.: ФГУП “ЦНИИАТОМИНФОРМ”, 2008.
  13. 11. Дрейцер Г.А., Калинин Э.К, Копп И.З., Мякочин А.С. Эффективные поверхности теплообмена. М.: Энергоатомиздат, 1998.
  14. 12. Dreitser G.A. , Kalinin E.K., Heat Transfer Enhancement in Heat Exchangers // Advances in Heat Transfer. V. 31. New York: Academic Press, 1998. P. 159.
4.54
plachich
практикующий юрист в сфере гражданского, уголовного, арбитражного и другого права, Из видов работ предпочитаю: курсовые, дипломные, контрольные, а также тесты; отношу себя к специалистам по рерайту