На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$f{left (x right )} = frac{log{left (x right )}}{log{left (frac{1}{3} right )}}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$frac{log{left (x right )}}{log{left (frac{1}{3} right )}} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 1$$
Численное решение
$$x_{1} = 1$$

Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(x)/log(1/3).
$$frac{log{left (0 right )}}{log{left (frac{1}{3} right )}}$$
Результат:
$$f{left (0 right )} = tilde{infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty}left(frac{log{left (x right )}}{log{left (frac{1}{3} right )}}right) = -infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(x)/log(1/3), делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{log{left (x right )}}{x log{left (frac{1}{3} right )}}right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$frac{log{left (x right )}}{log{left (frac{1}{3} right )}} = frac{log{left (- x right )}}{log{left (frac{1}{3} right )}}$$
– Нет
$$frac{log{left (x right )}}{log{left (frac{1}{3} right )}} = – frac{log{left (- x right )}}{log{left (frac{1}{3} right )}}$$
– Нет
значит, функция
не является
ни чётной ни нечётной
   
4.48
user814242
Я хочу помочь Вам с написанием контрольных и курсовых работ по экономическим и юридическим предметам, решением задач по бух. учету, составлением отчетов по практике. О себе: работающий специалист с экономическим и юридическим стажем