На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
Дано
$$f{left (x right )} = tanh{left (x right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$tanh{left (x right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
значит надо решить уравнение:
$$tanh{left (x right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в tanh(x).
$$tanh{left (0 right )}$$
Результат:
$$f{left (0 right )} = 0$$
Точка:
подставляем x = 0 в tanh(x).
$$tanh{left (0 right )}$$
Результат:
$$f{left (0 right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 0]
Выпуклая на промежутках
[0, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty} tanh{left (x right )} = -1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 1$$
$$lim_{x to -infty} tanh{left (x right )} = -1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 1$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции tanh(x), делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{1}{x} tanh{left (x right )}right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
$$lim_{x to -infty}left(frac{1}{x} tanh{left (x right )}right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$tanh{left (x right )} = – tanh{left (x right )}$$
– Нет
$$tanh{left (x right )} = – -1 tanh{left (x right )}$$
– Да
значит, функция
является
нечётной
Итак, проверяем:
$$tanh{left (x right )} = – tanh{left (x right )}$$
– Нет
$$tanh{left (x right )} = – -1 tanh{left (x right )}$$
– Да
значит, функция
является
нечётной