На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$f{left (x right )} = x^{31} + frac{1}{x^{31}}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{31} + frac{1}{x^{31}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^31 + 1/(x^31).
$$0^{31} + frac{1}{0^{31}}$$
Результат:
$$f{left (0 right )} = tilde{infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$
$$x_{2} = 1$$
Зн. экстремумы в точках:

(-1, -2)

(1, 2)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 1$$
Максимумы функции в точках:
$$x_{2} = -1$$
Убывает на промежутках

(-oo, -1] U [1, oo)

Возрастает на промежутках

[-1, 1]

Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty}left(x^{31} + frac{1}{x^{31}}right) = -infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^31 + 1/(x^31), делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{1}{x} left(x^{31} + frac{1}{x^{31}}right)right) = infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{31} + frac{1}{x^{31}} = – x^{31} – frac{1}{x^{31}}$$
– Нет
$$x^{31} + frac{1}{x^{31}} = – -1 x^{31} – – frac{1}{x^{31}}$$
– Нет
значит, функция
не является
ни чётной ни нечётной
   
4.29
suzanna200
Практикующий кадровик. Юрист. Пишу работы по всем отраслям права, философии, религии, политологии, истории и т. д. Делаю переводы и контрольные работы по немецкому языку. Качественно, недорого, в срок и только по актуальным источникам.