На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
Дано
$$2^{x} 3^{y} = 24$$
y x
2 *3 = 81
$$2^{y} 3^{x} = 81$$
Ответ
$$x_{1} = frac{1}{log{left (2 right )}} left(- frac{left(- log{left (3 right )} + log{left (2 right )}right) log^{2}{left (3 right )}}{- log^{2}{left (3 right )} + log^{2}{left (2 right )}} + log{left (24 right )}right)$$
=
$$frac{1}{log{left (2 right )} log{left (6 right )}} left(- log^{2}{left (3 right )} + log{left (24^{log{left (2 right )} + log{left (3 right )}} right )}right)$$
=
=
$$frac{1}{log{left (2 right )} log{left (6 right )}} left(- log^{2}{left (3 right )} + log{left (24^{log{left (2 right )} + log{left (3 right )}} right )}right)$$
=
3.61314719276546
$$y_{1} = frac{left(- log{left (3 right )} + log{left (2 right )}right) log{left (3 right )}}{- log^{2}{left (3 right )} + log^{2}{left (2 right )}}$$
=
$$log{left (3^{frac{1}{log{left (6 right )}}} right )}$$
=
0.613147192765458
Численный ответ
x1 = 3.613147192765458
y1 = 0.6131471927654584