На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
Дано
$$f left(4 x + 3right) + g x left(6 x + 4right) = 2$$
f*(2*x + 1) + g*(3*x + 1) = x + 1
$$f left(2 x + 1right) + g left(3 x + 1right) = x + 1$$
Ответ
$$f_{1} = frac{6 x^{3} + 10 x^{2} – 2 x – 2}{12 x^{3} + 2 x^{2} – 9 x – 3}$$
=
$$frac{6 x^{3} + 10 x^{2} – 2 x – 2}{12 x^{3} + 2 x^{2} – 9 x – 3}$$
=
=
$$frac{6 x^{3} + 10 x^{2} – 2 x – 2}{12 x^{3} + 2 x^{2} – 9 x – 3}$$
=
2*(-1 – x + 3*x^3 + 5*x^2)/(-3 + 2*x^2 + 12*x^3 – 9*x)
$$g_{1} = – frac{4 x^{2} + 3 x + 1}{12 x^{3} + 2 x^{2} – 9 x – 3}$$
=
$$- frac{4 x^{2} + 3 x + 1}{12 x^{3} + 2 x^{2} – 9 x – 3}$$
=
-(1 + 4*x^2 + 3*x)/(-3 + 2*x^2 + 12*x^3 – 9*x)