На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x – y – 2 = 0$$

x + y – 6 = 0

$$x + y – 6 = 0$$
Подробное решение
Дана система ур-ний
$$x – y – 2 = 0$$
$$x + y – 6 = 0$$

Из 1-го ур-ния выразим x
$$x – y – 2 = 0$$
Перенесем слагаемое с переменной y из левой части в правую со сменой знака
$$x – 2 = – -1 y$$
$$x – 2 = y$$
Перенесем свободное слагаемое -2 из левой части в правую со сменой знака
$$x = y + 2$$
$$x = y + 2$$
Подставим найденное x в 2-е ур-ние
$$x + y – 6 = 0$$
Получим:
$$y + y + 2 – 6 = 0$$
$$2 y – 4 = 0$$
Перенесем свободное слагаемое -4 из левой части в правую со сменой знака
$$2 y = 4$$
$$2 y = 4$$
Разделим обе части ур-ния на множитель при y
$$frac{2 y}{2} = 2$$
$$y = 2$$
Т.к.
$$x = y + 2$$
то
$$x = 2 + 2$$
$$x = 4$$

Ответ:
$$x = 4$$
$$y = 2$$

Ответ
$$x_{1} = 4$$
=
$$4$$
=

4

$$y_{1} = 2$$
=
$$2$$
=

2

Метод Крамера
$$x – y – 2 = 0$$
$$x + y – 6 = 0$$

Приведём систему ур-ний к каноническому виду
$$x – y = 2$$
$$x + y = 6$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}x_{1} – x_{2}x_{1} + x_{2}end{matrix}right] = left[begin{matrix}26end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}1 & -11 & 1end{matrix}right] right )} = 2$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = frac{1}{2} {det}{left (left[begin{matrix}2 & -16 & 1end{matrix}right] right )} = 4$$
$$x_{2} = frac{1}{2} {det}{left (left[begin{matrix}1 & 21 & 6end{matrix}right] right )} = 2$$

Метод Гаусса
Дана система ур-ний
$$x – y – 2 = 0$$
$$x + y – 6 = 0$$

Приведём систему ур-ний к каноническому виду
$$x – y = 2$$
$$x + y = 6$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}1 & -1 & 21 & 1 & 6end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}11end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}1 & -1 & 2end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}0 & 2 & 4end{matrix}right] = left[begin{matrix}0 & 2 & 4end{matrix}right]$$
получаем
$$left[begin{matrix}1 & -1 & 2 & 2 & 4end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}-12end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & 2 & 4end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}1 & 0 & 4end{matrix}right] = left[begin{matrix}1 & 0 & 4end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 0 & 4 & 2 & 4end{matrix}right]$$

Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$x_{1} – 4 = 0$$
$$2 x_{2} – 4 = 0$$
Получаем ответ:
$$x_{1} = 4$$
$$x_{2} = 2$$

Численный ответ

x1 = 4.00000000000000
y1 = 2.00000000000000

   
4.74
Mirasue
Работаю в сфере контрольных работ больше 6-ти лет. Есть своя команда по выполнению контрольных работ