На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
x – y = 100
$$x + y = 110$$
$$x – y = 100$$
Из 1-го ур-ния выразим x
$$x + y = 110$$
Перенесем слагаемое с переменной y из левой части в правую со сменой знака
$$x = – y + 110$$
$$x = – y + 110$$
Подставим найденное x в 2-е ур-ние
$$x – y = 100$$
Получим:
$$- y + – y + 110 = 100$$
$$- 2 y + 110 = 100$$
Перенесем свободное слагаемое 110 из левой части в правую со сменой знака
$$- 2 y = -10$$
$$- 2 y = -10$$
Разделим обе части ур-ния на множитель при y
$$frac{1}{-2} left(-1 cdot 2 yright) = 5$$
$$y = 5$$
Т.к.
$$x = – y + 110$$
то
$$x = – 5 + 110$$
$$x = 105$$
Ответ:
$$x = 105$$
$$y = 5$$
=
$$105$$
=
105
$$y_{1} = 5$$
=
$$5$$
=
5
$$x – y = 100$$
Приведём систему ур-ний к каноническому виду
$$x + y = 110$$
$$x – y = 100$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}x_{1} + x_{2}x_{1} – x_{2}end{matrix}right] = left[begin{matrix}110100end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B
Решение такого матричного ур-ния методом Крамера найдём так:
Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}1 & 11 & -1end{matrix}right] right )} = -2$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = – frac{1}{2} {det}{left (left[begin{matrix}110 & 1100 & -1end{matrix}right] right )} = 105$$
$$x_{2} = – frac{1}{2} {det}{left (left[begin{matrix}1 & 1101 & 100end{matrix}right] right )} = 5$$
$$x + y = 110$$
$$x – y = 100$$
Приведём систему ур-ний к каноническому виду
$$x + y = 110$$
$$x – y = 100$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}1 & 1 & 1101 & -1 & 100end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}11end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}1 & 1 & 110end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}0 & -2 & -10end{matrix}right] = left[begin{matrix}0 & -2 & -10end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 1 & 110 & -2 & -10end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}1 -2end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & -2 & -10end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}1 & 0 & 105end{matrix}right] = left[begin{matrix}1 & 0 & 105end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 0 & 105 & -2 & -10end{matrix}right]$$
Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$x_{1} – 105 = 0$$
$$- 2 x_{2} + 10 = 0$$
Получаем ответ:
$$x_{1} = 105$$
$$x_{2} = 5$$
x1 = 105.000000000000
y1 = 5.00000000000000