На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
Обозначим скорость первой машины как V1 = 50 км/ч, скорость второй машины как V2 = 40 км/ч и время, через которое третья машина обогнала первую, как T.
Так как первая и вторая машины движутся одновременно в одном и том же направлении, то скорость относительно второй машины будет V1 – V2.
Для расстояния, которое пройдет третья машина, будет справедливо уравнение:
(50 км/ч – 40 км/ч) * T = 40 км + (50 км/ч * 1.5 часа).
Решим это уравнение и найдем значение T:
10 км/ч * T = 40 км + 75 км
10 км/ч * T = 115 км
T = 11.5 часов.
Третья машина обогнала первую через 11.5 часов после старта, поэтому время, через которое она обогнала вторую, будет равно 11.5 часов + 1.5 часа = 13 часов.
Найдем скорость третьей машины, разделив расстояние, которое пройдет третья машина, на время:
V = (40 км + 50 км) / 13 часов
V ≈ 7.69 км/ч.
Следовательно, скорость третьей машины составляет около 7.69 км/ч.