На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$8 x – 3 x + 27 leq -9$$
Чтобы решить это нер-во – надо сначала решить соотвествующее ур-ние:
$$8 x – 3 x + 27 = -9$$
Решаем:
Дано линейное уравнение:
8*x-3*(x+9) = -9
Раскрываем скобочки в левой части ур-ния
8*x-3*x-3*9 = -9
Приводим подобные слагаемые в левой части ур-ния:
-27 + 5*x = -9
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
$$5 x = 18$$
Разделим обе части ур-ния на 5
x = 18 / (5)
$$x_{1} = frac{18}{5}$$
$$x_{1} = frac{18}{5}$$
Данные корни
$$x_{1} = frac{18}{5}$$
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
$$x_{0} leq x_{1}$$
Возьмём например точку
$$x_{0} = x_{1} – frac{1}{10}$$
=
$$frac{7}{2}$$
=
$$frac{7}{2}$$
подставляем в выражение
$$8 x – 3 x + 27 leq -9$$
8*7
— – 3*(7/2 + 9) <= -9 2
-19/2 <= -9
значит решение неравенства будет при:
$$x leq frac{18}{5}$$
_____
——-•——-
x1
(-oo, 18/5]
Купить уже готовую работу
Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.