На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$2 sin^{2}{left (x right )} + cos{left (x right )} – 1 = 0$$
преобразуем
$$cos{left (x right )} – cos{left (2 x right )} = 0$$
$$- 2 cos^{2}{left (x right )} + cos{left (x right )} + 1 = 0$$
Сделаем замену
$$w = cos{left (x right )}$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = frac{sqrt{D} – b}{2 a}$$
$$w_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = -2$$
$$b = 1$$
$$c = 1$$
, то
D = b^2 – 4 * a * c =
(1)^2 – 4 * (-2) * (1) = 9
Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b – sqrt(D)) / (2*a)
или
$$w_{1} = – frac{1}{2}$$
$$w_{2} = 1$$
делаем обратную замену
$$cos{left (x right )} = w$$
Дано уравнение
$$cos{left (x right )} = w$$
– это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = pi n + {acos}{left (w right )}$$
$$x = pi n + {acos}{left (w right )} – pi$$
Или
$$x = pi n + {acos}{left (w right )}$$
$$x = pi n + {acos}{left (w right )} – pi$$
, где n – любое целое число
подставляем w:
$$x_{1} = pi n + {acos}{left (w_{1} right )}$$
$$x_{1} = pi n + {acos}{left (- frac{1}{2} right )}$$
$$x_{1} = pi n + frac{2 pi}{3}$$
$$x_{2} = pi n + {acos}{left (w_{2} right )}$$
$$x_{2} = pi n + {acos}{left (1 right )}$$
$$x_{2} = pi n$$
$$x_{3} = pi n + {acos}{left (w_{1} right )} – pi$$
$$x_{3} = pi n – pi + {acos}{left (- frac{1}{2} right )}$$
$$x_{3} = pi n – frac{pi}{3}$$
$$x_{4} = pi n + {acos}{left (w_{2} right )} – pi$$
$$x_{4} = pi n – pi + {acos}{left (1 right )}$$
$$x_{4} = pi n – pi$$
-2*pi
x2 = —–
3
2*pi
x3 = —-
3
x1 = 12.5663700883000
x2 = 50.2654824464000
x3 = -77.4926187885000
x4 = 48.1710873550000
x5 = 58.6430628670000
x6 = -25.1327414475000
x7 = 43.9822969706000
x8 = 14.6607657168000
x9 = -71.2094334814000
x10 = 25.1327412234000
x11 = 92.1533845053000
x12 = 2.09439510239000
x13 = 69.1150383780000
x14 = -2.09439510239000
x15 = -33.5103216383000
x16 = 39.7935069455000
x17 = 77.4926187885000
x18 = -62.8318529504000
x19 = 43.9822971694000
x20 = -92.1533845053000
x21 = -62.8318537995000
x22 = -18.8495555012000
x23 = -87.9645943588000
x24 = -90.0589894029000
x25 = 100.530964769000
x26 = -56.5486675394000
x27 = -4.18879020479000
x28 = 52.3598775598000
x29 = 41.8879020479000
x30 = -31.4159267013000
x31 = -81.6814090379000
x32 = 25.1327411126000
x33 = -75.3982238576000
x34 = 12.5663704552000
x35 = 79.5870138909000
x36 = 8.37758040957000
x37 = 35.6047167407000
x38 = 54.4542726622000
x39 = -27.2271363311000
x40 = 81.6814091713000
x41 = -52.3598775598000
x42 = -73.3038285838000
x43 = -46.0766922527000
x44 = -6.28318514162000
x45 = 83.7758040957000
x46 = 69.1150383296000
x47 = 0.0
x48 = -18.8495558711000
x49 = 90.0589894029000
x50 = -10.4719755120000
x51 = 75.3982239117000
x52 = 31.4159267619000
x53 = 62.8318528532000
x54 = -37.6991118771000
x55 = -41.8879020479000
x56 = 60.7374579694000
x57 = 69.1150378321000
x58 = -100.530964691000
x59 = 87.9645943357000
x60 = -54.4542726622000
x61 = 56.5486676120000
x62 = 85.8701991981000
x63 = 96.3421747101000
x64 = -98.4365698125000
x65 = 25.1327412731000
x66 = 18.8495557025000
x67 = 33.5103216383000
x68 = -69.1150390954000
x69 = -94.2477794557000
x70 = 10.4719755120000
x71 = 46.0766922527000
x72 = 98.4365698125000
x73 = 94.2477796094000
x74 = -8.37758040957000
x75 = -50.2654822985000
x76 = -18.8495558410000
x77 = -29.3215314335000
x78 = -43.9822971746000
x79 = -79.5870138909000
x80 = -18.8495558006000
x81 = -83.7758040957000
x82 = 6.28318528427000
x83 = -39.7935069455000
x84 = 25.1327417460000
x85 = -85.8701991981000
x86 = 4.18879020479000
x87 = -96.3421747101000
x88 = -48.1710873550000
x89 = -35.6047167407000
x90 = -62.8318529623000
x91 = -12.5663703885000
x92 = 37.6991120150000
x93 = 16.7551608191000
x94 = -69.1150385968000
x95 = 69.1150384283000