На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$2 sin^{3}{left (x right )} – cos{left (2 x right )} – sin{left (x right )} = 0$$
преобразуем
$$2 sin^{3}{left (x right )} + 2 sin^{2}{left (x right )} – sin{left (x right )} – 1 = 0$$
$$2 sin^{3}{left (x right )} + 2 sin^{2}{left (x right )} – sin{left (x right )} – 1 = 0$$
Сделаем замену
$$w = sin{left (x right )}$$
Дано уравнение:
$$2 w^{3} + 2 w^{2} – w – 1 = 0$$
преобразуем
$$- w + 2 w^{2} + 2 w^{3} + 2 – 2 – 1 = 0$$
или
$$- w + 2 w^{2} + 2 w^{3} – -2 – 2 – 1 = 0$$
$$- w + 1 + 2 left(w^{2} – 1right) + 2 left(w^{3} – -1right) = 0$$
$$- w + 1 + left(w – 1right) 2 left(w + 1right) + 2 left(w + 1right) left(w^{2} – w + left(-1right)^{2}right) = 0$$
Вынесем общий множитель 1 + w за скобки
получим:
$$left(w + 1right) left(2 left(w – 1right) + 2 left(w^{2} – w + left(-1right)^{2}right) – 1right) = 0$$
или
$$left(w + 1right) left(2 w^{2} – 1right) = 0$$
тогда:
$$w_{1} = -1$$
и также
получаем ур-ние
$$2 w^{2} – 1 = 0$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{2} = frac{sqrt{D} – b}{2 a}$$
$$w_{3} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 2$$
$$b = 0$$
$$c = -1$$
, то
D = b^2 – 4 * a * c =
(0)^2 – 4 * (2) * (-1) = 8
Т.к. D > 0, то уравнение имеет два корня.
w2 = (-b + sqrt(D)) / (2*a)
w3 = (-b – sqrt(D)) / (2*a)
или
$$w_{2} = frac{sqrt{2}}{2}$$
$$w_{3} = – frac{sqrt{2}}{2}$$
Получаем окончательный ответ для -1 – sin(x) + 2*sin(x)^2 + 2*sin(x)^3 = 0:
$$w_{1} = -1$$
$$w_{2} = frac{sqrt{2}}{2}$$
$$w_{3} = – frac{sqrt{2}}{2}$$
делаем обратную замену
$$sin{left (x right )} = w$$
Дано уравнение
$$sin{left (x right )} = w$$
– это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 pi n + {asin}{left (w right )}$$
$$x = 2 pi n – {asin}{left (w right )} + pi$$
Или
$$x = 2 pi n + {asin}{left (w right )}$$
$$x = 2 pi n – {asin}{left (w right )} + pi$$
, где n – любое целое число
подставляем w:
$$x_{1} = 2 pi n + {asin}{left (w_{1} right )}$$
$$x_{1} = 2 pi n + {asin}{left (-1 right )}$$
$$x_{1} = 2 pi n – frac{pi}{2}$$
$$x_{2} = 2 pi n + {asin}{left (w_{2} right )}$$
$$x_{2} = 2 pi n + {asin}{left (frac{sqrt{2}}{2} right )}$$
$$x_{2} = 2 pi n + frac{pi}{4}$$
$$x_{3} = 2 pi n + {asin}{left (w_{3} right )}$$
$$x_{3} = 2 pi n + {asin}{left (- frac{sqrt{2}}{2} right )}$$
$$x_{3} = 2 pi n – frac{pi}{4}$$
$$x_{4} = 2 pi n – {asin}{left (w_{1} right )} + pi$$
$$x_{4} = 2 pi n – {asin}{left (-1 right )} + pi$$
$$x_{4} = 2 pi n + frac{3 pi}{2}$$
$$x_{5} = 2 pi n – {asin}{left (w_{2} right )} + pi$$
$$x_{5} = 2 pi n – {asin}{left (frac{sqrt{2}}{2} right )} + pi$$
$$x_{5} = 2 pi n + frac{3 pi}{4}$$
$$x_{6} = 2 pi n – {asin}{left (w_{3} right )} + pi$$
$$x_{6} = 2 pi n – {asin}{left (- frac{sqrt{2}}{2} right )} + pi$$
$$x_{6} = 2 pi n + frac{5 pi}{4}$$
-pi
x1 = —-
2
3*pi /log(2) / ___
x2 = – —- + I*|—— – log/ 2 /|
4 2 /
3*pi /log(2) / ___
x3 = —- + I*|—— – log/ 2 /|
4 2 /
pi /log(2) / ___
x4 = – — + I*|—— – log/ 2 /|
4 2 /
pi /log(2) / ___
x5 = — + I*|—— – log/ 2 /|
4 2 /
x1 = -77.7544181763000
x2 = 90.3207887907000
x3 = 22.7765467385000
x4 = -93.4623814443000
x5 = 77.7544181763000
x6 = -7.85398151564000
x7 = -71.4712328692000
x8 = -45.5530935610000
x9 = 33.7721210261000
x10 = -47.9092879672000
x11 = 66.7588438888000
x12 = 69.9004365424000
x13 = -89.5353908032000
x14 = -25.9181393921000
x15 = 63.6172512352000
x16 = 30.6305283725000
x17 = -49.4800842940000
x18 = -14.1371668576000
x19 = 84.0376034835000
x20 = 36.1283156124000
x21 = 54.1924732744000
x22 = 2.35619449019000
x23 = -33.7721210261000
x24 = 10.2101761242000
x25 = 62.0464549084000
x26 = -89.5353907108000
x27 = -58.1194640130000
x28 = 76.1836218496000
x29 = 49.4800842940000
x30 = -2.35619449019000
x31 = -5.49778714378000
x32 = -55.7632696012000
x33 = 60.4756585816000
x34 = -54.1924732744000
x35 = -38.4845100065000
x36 = 40.0553063333000
x37 = -32.2013246993000
x38 = -79.3252145031000
x39 = -18.0641577581000
x40 = -62.0464549084000
x41 = 46.3384916404000
x42 = -11.7809724510000
x43 = -64.4026492015000
x44 = 80.1106110912000
x45 = -65.1880475620000
x46 = -45.5530929409000
x47 = 85.6083998103000
x48 = -26.7035359875000
x49 = 32.2013246993000
x50 = -76.1836218496000
x51 = 18.0641577581000
x52 = -99.7455667515000
x53 = -69.9004365424000
x54 = 3.92699081699000
x55 = 80.8960108299000
x56 = 93.4623814443000
x57 = 11.7809724510000
x58 = 98.1747704247000
x59 = -19.6349540849000
x60 = 38.4845100065000
x61 = -209.701309627000
x62 = -21.2057504117000
x63 = 24.3473430653000
x64 = -84.0376034835000
x65 = -35.3429173529000
x66 = -41.6261026601000
x67 = -91.8915851175000
x68 = 82.4668071567000
x69 = 96.6039740979000
x70 = 25.9181393921000
x71 = 42.4115007446000
x72 = -95.8185758687000
x73 = -76.9690200451000
x74 = -8.63937979737000
x75 = -82.4668071567000
x76 = 86.3937978996000
x77 = -10.2101761242000
x78 = -40.0553063333000
x79 = -85.6083998103000
x80 = 73.8274274488000
x81 = -27.4889357189000
x82 = -98.1747704247000
x83 = 47.9092879672000
x84 = 16.4933614313000
x85 = 29.8451302963000
x86 = -3.92699081699000
x87 = 68.3296402156000
x88 = 19.6349540849000
x89 = -1.57079640899000
x90 = 5.49778714378000
x91 = 99.7455667515000
x92 = 52.6216769476000
x93 = -68.3296402156000
x94 = 55.7632696012000
x95 = -24.3473430653000
x96 = 8.63937979737000
x97 = -51.8362786930000