На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$2 x^{2} – 12 x + 10 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 2$$
$$b = -12$$
$$c = 10$$
, то

D = b^2 – 4 * a * c =

(-12)^2 – 4 * (2) * (10) = 64

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 5$$
$$x_{2} = 1$$

Ответ
$$x_{1} = 1$$

x2 = 5

$$x_{2} = 5$$
Численный ответ

x1 = 1.00000000000000

x2 = 5.00000000000000

   
4.65
Ais161
Выполню Ваши курсовые, дипломные, рефераты, статьи, контрольные работы качественно и в срок. Всегда на связи!