На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$64 x^{2} + 25 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 64$$
$$b = 0$$
$$c = 25$$
, то

D = b^2 – 4 * a * c =

(0)^2 – 4 * (64) * (25) = -6400

Т.к. D < 0, то уравнение
не имеет вещественных корней,
но комплексные корни имеются.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = frac{5 i}{8}$$
$$x_{2} = – frac{5 i}{8}$$

Ответ

Данное ур-ние не имеет решений

Численный ответ

x1 = 0.625*i

x2 = -0.625*i

   
5.0
user2405703
Являюсь выпускником ведущего юридического ВУЗа страны. Практикующий юрист, а в силу этого знаю обо всех изменения в законе. Поэтому все решения будут актуальны на момент предоставления Вам.