Дано

$$cos{left (6 a right )} – frac{cos{left (4 a right )}}{sin{left (5 a right )}}$$
Подстановка условия
$$cos{left (6 a right )} – frac{cos{left (4 a right )}}{sin{left (5 a right )}}$$

cos(6*(3/2)) – cos(4*(3/2))/sin(5*(3/2))

$$cos{left (6 (3/2) right )} – frac{cos{left (4 (3/2) right )}}{sin{left (5 (3/2) right )}}$$

cos(6*3/2) – cos(4*3/2)/sin(5*3/2)

$$- frac{cos{left (frac{12}{2} right )}}{sin{left (frac{15}{2} right )}} + cos{left (frac{18}{2} right )}$$

-cos(6)/sin(15/2) + cos(9)

$$- frac{cos{left (6 right )}}{sin{left (frac{15}{2} right )}} + cos{left (9 right )}$$
Численный ответ

-cos(4*a)/sin(5*a) + cos(6*a)

Рациональный знаменатель
$$frac{1}{sin{left (5 a right )}} left(sin{left (5 a right )} cos{left (6 a right )} – cos{left (4 a right )}right)$$
Объединение рациональных выражений
$$frac{1}{sin{left (5 a right )}} left(sin{left (5 a right )} cos{left (6 a right )} – cos{left (4 a right )}right)$$
Соберем выражение
$$- cos{left (4 a right )} csc{left (5 a right )} + cos{left (6 a right )}$$
Комбинаторика

-(-cos(6*a)*sin(5*a) + cos(4*a))
———————————
sin(5*a)

$$- frac{1}{sin{left (5 a right )}} left(- sin{left (5 a right )} cos{left (6 a right )} + cos{left (4 a right )}right)$$
Раскрыть выражение

4 4 2 2
6 6 – cos (a) – sin (a) + 6*cos (a)*sin (a) 4 2 2 4
cos (a) – sin (a) + ———————————————– – 15*cos (a)*sin (a) + 15*cos (a)*sin (a)
5 2 3 4
sin (a) – 10*cos (a)*sin (a) + 5*cos (a)*sin(a)

$$frac{- sin^{4}{left (a right )} + 6 sin^{2}{left (a right )} cos^{2}{left (a right )} – cos^{4}{left (a right )}}{sin^{5}{left (a right )} – 10 sin^{3}{left (a right )} cos^{2}{left (a right )} + 5 sin{left (a right )} cos^{4}{left (a right )}} – sin^{6}{left (a right )} + 15 sin^{4}{left (a right )} cos^{2}{left (a right )} – 15 sin^{2}{left (a right )} cos^{4}{left (a right )} + cos^{6}{left (a right )}$$
   
5.0
Nika94
Имею большой опыт по написанию курсовых, дипломных работ в сфере "юриспруденция", "педагогика", а также большой опыт по техническим наукам, особенно в решении задач по физике.