На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$- sin^{2}{left (x right )} + cos^{2}{left (x right )} = 0$$
преобразуем
$$cos{left (2 x right )} = 0$$
$$- 2 sin^{2}{left (x right )} + 1 = 0$$
Сделаем замену
$$w = sin{left (x right )}$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = frac{sqrt{D} – b}{2 a}$$
$$w_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = -2$$
$$b = 0$$
$$c = 1$$
, то
D = b^2 – 4 * a * c =
(0)^2 – 4 * (-2) * (1) = 8
Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b – sqrt(D)) / (2*a)
или
$$w_{1} = – frac{sqrt{2}}{2}$$
$$w_{2} = frac{sqrt{2}}{2}$$
делаем обратную замену
$$sin{left (x right )} = w$$
Дано уравнение
$$sin{left (x right )} = w$$
– это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 pi n + {asin}{left (w right )}$$
$$x = 2 pi n – {asin}{left (w right )} + pi$$
Или
$$x = 2 pi n + {asin}{left (w right )}$$
$$x = 2 pi n – {asin}{left (w right )} + pi$$
, где n – любое целое число
подставляем w:
$$x_{1} = 2 pi n + {asin}{left (w_{1} right )}$$
$$x_{1} = 2 pi n + {asin}{left (- frac{sqrt{2}}{2} right )}$$
$$x_{1} = 2 pi n – frac{pi}{4}$$
$$x_{2} = 2 pi n + {asin}{left (w_{2} right )}$$
$$x_{2} = 2 pi n + {asin}{left (frac{sqrt{2}}{2} right )}$$
$$x_{2} = 2 pi n + frac{pi}{4}$$
$$x_{3} = 2 pi n – {asin}{left (w_{1} right )} + pi$$
$$x_{3} = 2 pi n – {asin}{left (- frac{sqrt{2}}{2} right )} + pi$$
$$x_{3} = 2 pi n + frac{5 pi}{4}$$
$$x_{4} = 2 pi n – {asin}{left (w_{2} right )} + pi$$
$$x_{4} = 2 pi n – {asin}{left (frac{sqrt{2}}{2} right )} + pi$$
$$x_{4} = 2 pi n + frac{3 pi}{4}$$
-3*pi
x1 = —–
4
-pi
x2 = —-
4
pi
x3 = —
4
3*pi
x4 = —-
4
x1 = -77.7544181763000
x2 = 90.3207887907000
x3 = 22.7765467385000
x4 = -93.4623814443000
x5 = 77.7544181763000
x6 = -13.3517687778000
x7 = -71.4712328692000
x8 = 33.7721210261000
x9 = -47.9092879672000
x10 = 66.7588438888000
x11 = 162.577419823000
x12 = 69.9004365424000
x13 = -25.9181393921000
x14 = 63.6172512352000
x15 = 30.6305283725000
x16 = -49.4800842940000
x17 = 84.0376034835000
x18 = 54.1924732744000
x19 = 2.35619449019000
x20 = 6876.16092054000
x21 = -33.7721210261000
x22 = 10.2101761242000
x23 = 87.1791961371000
x24 = 76.1836218496000
x25 = 49.4800842940000
x26 = -2.35619449019000
x27 = -5.49778714378000
x28 = -55.7632696012000
x29 = 60.4756585816000
x30 = -54.1924732744000
x31 = -38.4845100065000
x32 = -46.3384916404000
x33 = 40.0553063333000
x34 = 41.6261026601000
x35 = -32.2013246993000
x36 = -79.3252145031000
x37 = -18.0641577581000
x38 = -62.0464549084000
x39 = 44.7676953137000
x40 = 46.3384916404000
x41 = -11.7809724510000
x42 = 27.4889357189000
x43 = 85.6083998103000
x44 = 32.2013246993000
x45 = 74.6128255228000
x46 = -63.6172512352000
x47 = -76.1836218496000
x48 = 18.0641577581000
x49 = -99.7455667515000
x50 = -60.4756585816000
x51 = -90.3207887907000
x52 = -16.4933614313000
x53 = -69.9004365424000
x54 = 88.7499924639000
x55 = 3.92699081699000
x56 = 11.7809724510000
x57 = 98.1747704247000
x58 = -19.6349540849000
x59 = 38.4845100065000
x60 = 24.3473430653000
x61 = 62.0464549084000
x62 = -84.0376034835000
x63 = -35.3429173529000
x64 = -41.6261026601000
x65 = -91.8915851175000
x66 = 82.4668071567000
x67 = 96.6039740979000
x68 = 25.9181393921000
x69 = -27.4889357189000
x70 = 384.059701901000
x71 = -82.4668071567000
x72 = -10.2101761242000
x73 = -40.0553063333000
x74 = -85.6083998103000
x75 = -57.3340659280000
x76 = -98.1747704247000
x77 = 47.9092879672000
x78 = 16.4933614313000
x79 = -3.92699081699000
x80 = 68.3296402156000
x81 = 19.6349540849000
x82 = 5.49778714378000
x83 = 99.7455667515000
x84 = 52.6216769476000
x85 = -24.3473430653000
x86 = -68.3296402156000
x87 = 55.7632696012000
x88 = 91.8915851175000
x89 = 8.63937979737000