Дано

$$x^{2} – 12 x + 20 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = -12$$
$$c = 20$$
, то

D = b^2 – 4 * a * c =

(-12)^2 – 4 * (1) * (20) = 64

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 10$$
$$x_{2} = 2$$

Ответ
$$x_{1} = 2$$

x2 = 10

$$x_{2} = 10$$
Численный ответ

x1 = 2.00000000000000

x2 = 10.0000000000000

   
5.0
Physic77
Преподаватель вуза. Кандидат физико-математических наук. Доцент кафедры физики. Большой опыт (21 год) в решении задач по физике, математике, сопротивлению материалов, теоретической механике, прикладной механике, строительной механике.