Дано

$$x^{2} + 4 x – 32 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = 4$$
$$c = -32$$
, то

D = b^2 – 4 * a * c =

(4)^2 – 4 * (1) * (-32) = 144

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 4$$
$$x_{2} = -8$$

Ответ
$$x_{1} = -8$$

x2 = 4

$$x_{2} = 4$$
Численный ответ

x1 = 4.00000000000000

x2 = -8.00000000000000

   
4.17
zzzoxi
быстро и качественно выполню переводы и контрольные работы по немецкому языку. большой опыт перевода узкоспециализированных текстов, а также различных работ: решение задач, контрольных.