На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x^{2} + 4 x – 96 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = 4$$
$$c = -96$$
, то

D = b^2 – 4 * a * c =

(4)^2 – 4 * (1) * (-96) = 400

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 8$$
$$x_{2} = -12$$

Ответ
$$x_{1} = -12$$

x2 = 8

$$x_{2} = 8$$
Численный ответ

x1 = -12.0000000000000

x2 = 8.00000000000000

   
3.95
deva2309
По специальности работаю с 2010г., есть опыт выполнения контрольных, курсовых, дипломных работ, отчетов по практике на заказ: 2007 - 2014гг. студентам экономических специальностей. Качественно, быстро. Ответственна, пунктуальна.