На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x^{2} + 64 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = 0$$
$$c = 64$$
, то

D = b^2 – 4 * a * c =

(0)^2 – 4 * (1) * (64) = -256

Т.к. D < 0, то уравнение
не имеет вещественных корней,
но комплексные корни имеются.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 8 i$$
$$x_{2} = – 8 i$$

Ответ

Данное ур-ние не имеет решений

Численный ответ

x1 = 8.0*i

x2 = -8.0*i

   
3.98
Ruslana999
Работаем командой. Окажем профессиональную помощь в написании рефератов, контрольных, курсовых проектов, дипломных работ по различным учебным направлениям.