Дано

$$x^{2} – 8 x + 12 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = -8$$
$$c = 12$$
, то

D = b^2 – 4 * a * c =

(-8)^2 – 4 * (1) * (12) = 16

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 6$$
$$x_{2} = 2$$

Ответ
$$x_{1} = 2$$

x2 = 6

$$x_{2} = 6$$
Численный ответ

x1 = 2.00000000000000

x2 = 6.00000000000000

   
4.94
Yuli95
С 12 июля 2017 г. - по 11 декабря 2017 г.работала в МКУ "МФЦ" города Мегиона. Должность- специалист. С 10 мая 2018 г. - аналитик группы анализа, планирования и контроля штаба ОМВД России по г. Мегиону.