На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
значит надо решить уравнение:
$$x^{3} cdot 2 sin{left (4 right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
подставляем x = 0 в (2*sin(4))*x^3.
$$0^{3} cdot 2 sin{left (4 right )}$$
Результат:
$$f{left (0 right )} = 0$$
Точка:
(0, 0)
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Зн. экстремумы в точках:
(0, 0)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумов у функции нет
Убывает на всей числовой оси
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 0]
Выпуклая на промежутках
[0, oo)
$$lim_{x to -infty}left(x^{3} cdot 2 sin{left (4 right )}right) = infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
$$lim_{x to -infty}left(2 x^{2} sin{left (4 right )}right) = -infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Итак, проверяем:
$$x^{3} cdot 2 sin{left (4 right )} = – 2 x^{3} sin{left (4 right )}$$
– Нет
$$x^{3} cdot 2 sin{left (4 right )} = – -1 cdot 2 x^{3} sin{left (4 right )}$$
– Нет
значит, функция
не является
ни чётной ни нечётной