На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$f{left (x right )} = x^{3} cdot 2 sin{left (4 right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{3} cdot 2 sin{left (4 right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$

Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (2*sin(4))*x^3.
$$0^{3} cdot 2 sin{left (4 right )}$$
Результат:
$$f{left (0 right )} = 0$$
Точка:

(0, 0)

Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Зн. экстремумы в точках:

(0, 0)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумов у функции нет
Убывает на всей числовой оси

Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$frac{d^{2}}{d x^{2}} f{left (x right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$frac{d^{2}}{d x^{2}} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках

(-oo, 0]

Выпуклая на промежутках

[0, oo)

Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -infty}left(x^{3} cdot 2 sin{left (4 right )}right) = infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (2*sin(4))*x^3, делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(2 x^{2} sin{left (4 right )}right) = -infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{3} cdot 2 sin{left (4 right )} = – 2 x^{3} sin{left (4 right )}$$
– Нет
$$x^{3} cdot 2 sin{left (4 right )} = – -1 cdot 2 x^{3} sin{left (4 right )}$$
– Нет
значит, функция
не является
ни чётной ни нечётной
   
4.99
ValeriaSova
Имею два высших международных образования. Опыт написания студенческих и школьных работ более 5 лет. Работаю на трех языках (русский, английский, украинский), пишу курсовые и дипломные работы, рефераты, доклады, контрольные и прочее.