На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
2 2
12*x + 8*y = 50*x
=
$$4$$
=
4
$$y_{1} = 1$$
=
$$1$$
=
1
=
$$frac{1}{3600 left(1 + sqrt{3} iright)^{2} left(9209 + 1875 sqrt{265}right)} left(sqrt[3]{9209 + 1875 sqrt{265}} left(- 4768 sqrt[3]{2} + left(1 + sqrt{3} iright) left(8 + 2^{frac{2}{3}} left(1 + sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}right) sqrt[3]{9209 + 1875 sqrt{265}}right)^{2} + 114432 sqrt[3]{2} left(1 + sqrt{3} iright) left(9209 + 1875 sqrt{265}right)^{frac{2}{3}} + 24 left(1 + sqrt{3} iright)^{2} left(592 – 2^{frac{2}{3}} left(1 + sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}right) left(9209 + 1875 sqrt{265}right)right)$$
=
-4.06207316388046 + 0.581432015323434*i
$$y_{2} = frac{1}{3} + frac{149}{3 left(- frac{1}{2} – frac{sqrt{3} i}{2}right) sqrt[3]{frac{9209}{16} + frac{1875 sqrt{265}}{16}}} – frac{1}{3} left(- frac{1}{2} – frac{sqrt{3} i}{2}right) sqrt[3]{frac{9209}{16} + frac{1875 sqrt{265}}{16}}$$
=
$$frac{1}{24 left(1 + sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}} left(- 4768 sqrt[3]{2} + left(1 + sqrt{3} iright) left(8 + 2^{frac{2}{3}} left(1 + sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}right) sqrt[3]{9209 + 1875 sqrt{265}}right)$$
=
0.7564371995879 + 7.08545815819876*i
=
$$frac{1}{3600 left(1 – sqrt{3} iright)^{2} left(9209 + 1875 sqrt{265}right)} left(24 left(1 – sqrt{3} iright)^{2} left(592 + 2^{frac{2}{3}} left(-1 + sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}right) left(9209 + 1875 sqrt{265}right) + 114432 sqrt[3]{2} left(1 – sqrt{3} iright) left(9209 + 1875 sqrt{265}right)^{frac{2}{3}} + sqrt[3]{9209 + 1875 sqrt{265}} left(- 4768 sqrt[3]{2} + left(1 – sqrt{3} iright) left(8 + 2^{frac{2}{3}} left(1 – sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}right) sqrt[3]{9209 + 1875 sqrt{265}}right)^{2}right)$$
=
-4.06207316388046 – 0.581432015323434*i
$$y_{3} = frac{1}{3} – frac{1}{3} left(- frac{1}{2} + frac{sqrt{3} i}{2}right) sqrt[3]{frac{9209}{16} + frac{1875 sqrt{265}}{16}} + frac{149}{3 left(- frac{1}{2} + frac{sqrt{3} i}{2}right) sqrt[3]{frac{9209}{16} + frac{1875 sqrt{265}}{16}}}$$
=
$$frac{1}{24 left(1 – sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}} left(- 4768 sqrt[3]{2} + left(1 – sqrt{3} iright) left(8 + 2^{frac{2}{3}} left(1 – sqrt{3} iright) sqrt[3]{9209 + 1875 sqrt{265}}right) sqrt[3]{9209 + 1875 sqrt{265}}right)$$
=
0.7564371995879 – 7.08545815819876*i
=
$$- frac{4}{3} – frac{91}{7152} 2^{frac{2}{3}} sqrt[3]{9209 + 1875 sqrt{265}} – frac{25 sqrt[3]{2}}{2131296} sqrt{265} left(9209 + 1875 sqrt{265}right)^{frac{2}{3}} + frac{25 sqrt{265}}{7152} 2^{frac{2}{3}} sqrt[3]{9209 + 1875 sqrt{265}} + frac{4859 sqrt[3]{2}}{2131296} left(9209 + 1875 sqrt{265}right)^{frac{2}{3}}$$
=
4.12414632776092
$$y_{4} = – frac{1}{3} sqrt[3]{frac{9209}{16} + frac{1875 sqrt{265}}{16}} + frac{1}{3} + frac{149}{3 sqrt[3]{frac{9209}{16} + frac{1875 sqrt{265}}{16}}}$$
=
$$- frac{2^{frac{2}{3}}}{12} sqrt[3]{9209 + 1875 sqrt{265}} + frac{1}{3} + frac{298 sqrt[3]{2}}{3 sqrt[3]{9209 + 1875 sqrt{265}}}$$
=
-0.5128743991758
x1 = 4.00000000000000
y1 = 1.00000000000000