На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x + y = 23$$

x – y = 37

$$x – y = 37$$
Подробное решение
Дана система ур-ний
$$x + y = 23$$
$$x – y = 37$$

Из 1-го ур-ния выразим x
$$x + y = 23$$
Перенесем слагаемое с переменной y из левой части в правую со сменой знака
$$x = – y + 23$$
$$x = – y + 23$$
Подставим найденное x в 2-е ур-ние
$$x – y = 37$$
Получим:
$$- y + – y + 23 = 37$$
$$- 2 y + 23 = 37$$
Перенесем свободное слагаемое 23 из левой части в правую со сменой знака
$$- 2 y = 14$$
$$- 2 y = 14$$
Разделим обе части ур-ния на множитель при y
$$frac{1}{-2} left(-1 cdot 2 yright) = -7$$
$$y = -7$$
Т.к.
$$x = – y + 23$$
то
$$x = – -7 + 23$$
$$x = 30$$

Ответ:
$$x = 30$$
$$y = -7$$

Ответ
$$x_{1} = 30$$
=
$$30$$
=

30

$$y_{1} = -7$$
=
$$-7$$
=

-7

Метод Крамера
$$x + y = 23$$
$$x – y = 37$$

Приведём систему ур-ний к каноническому виду
$$x + y = 23$$
$$x – y = 37$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}x_{1} + x_{2}x_{1} – x_{2}end{matrix}right] = left[begin{matrix}2337end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}1 & 11 & -1end{matrix}right] right )} = -2$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = – frac{1}{2} {det}{left (left[begin{matrix}23 & 137 & -1end{matrix}right] right )} = 30$$
$$x_{2} = – frac{1}{2} {det}{left (left[begin{matrix}1 & 231 & 37end{matrix}right] right )} = -7$$

Метод Гаусса
Дана система ур-ний
$$x + y = 23$$
$$x – y = 37$$

Приведём систему ур-ний к каноническому виду
$$x + y = 23$$
$$x – y = 37$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}1 & 1 & 231 & -1 & 37end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}11end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}1 & 1 & 23end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}0 & -2 & 14end{matrix}right] = left[begin{matrix}0 & -2 & 14end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 1 & 23 & -2 & 14end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}1 -2end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & -2 & 14end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}1 & 0 & 30end{matrix}right] = left[begin{matrix}1 & 0 & 30end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 0 & 30 & -2 & 14end{matrix}right]$$

Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$x_{1} – 30 = 0$$
$$- 2 x_{2} – 14 = 0$$
Получаем ответ:
$$x_{1} = 30$$
$$x_{2} = -7$$

Численный ответ

x1 = 30.0000000000000
y1 = -7.00000000000000

   
4.06
ЛМН76
Выполняю работы для студентов уже более 12-и лет, за это время написано несколько сотен курсовых , рефератов, дипломов и контрольных. Все дипломные работы были защищены с оценками "отлично" и "хорошо". Работы выполняю качественно и в срок.