Дано

$$frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} > frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}}$$
Подробное решение
Дано неравенство:
$$frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} > frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}}$$
Чтобы решить это нер-во – надо сначала решить соотвествующее ур-ние:
$$frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} = frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}}$$
Решаем:
Дано уравнение
$$frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} = frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}}$$
преобразуем
$$frac{1}{log{left (7 right )}} left(log{left (x + 3 right )} – log{left (4 x – 3 right )}right) = 0$$
$$- frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}} + frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} = 0$$
Сделаем замену
$$w = log{left (7 right )}$$
Дано уравнение:
$$- frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}} + frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} = 0$$
Используем правило пропорций:
Из a1/b1 = a2/b2 следует a1*b2 = a2*b1,
В нашем случае

a1 = log(3 + x)

b1 = log(7)

a2 = log(-3 + 4*x)

b2 = log(7)

зн. получим ур-ние
$$log{left (7 right )} log{left (x + 3 right )} = log{left (7 right )} log{left (4 x – 3 right )}$$
$$log{left (7 right )} log{left (x + 3 right )} = log{left (7 right )} log{left (4 x – 3 right )}$$
Раскрываем скобочки в левой части ур-ния

log7log3+x = log(7)*log(-3 + 4*x)

Раскрываем скобочки в правой части ур-ния

log7log3+x = log7log-3+4*x

Данное ур-ние не имеет решений
делаем обратную замену
$$log{left (7 right )} = w$$
подставляем w:
$$x_{1} = 2$$
$$x_{1} = 2$$
Данные корни
$$x_{1} = 2$$
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
$$x_{0} < x_{1}$$
Возьмём например точку
$$x_{0} = x_{1} – frac{1}{10}$$
=
$$frac{19}{10}$$
=
$$frac{19}{10}$$
подставляем в выражение
$$frac{log{left (4 x – 3 right )}}{log{left (frac{1}{7} right )}} > frac{log{left (x + 3 right )}}{log{left (frac{1}{7} right )}}$$
$$frac{log{left (-3 + frac{76}{10} 1 right )}}{log{left (frac{1}{7} right )}} > frac{log{left (frac{19}{10} + 3 right )}}{log{left (frac{1}{7} right )}}$$

-(-log(5) + log(23)) -(-log(10) + log(49))
——————— > ———————-
log(7) log(7)

значит решение неравенства будет при:
$$x < 2$$

_____
——-ο——-
x1

Ответ
$$-infty < x wedge x < 2$$
Ответ №2

(-oo, 2)

$$x in left(-infty, 2right)$$
   

Выполненные готовые работы

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
4.9
Margarita1M
Выполняю курсовые, дипломные работы, контрольные, рефераты, статьи; работы проверяются на уникальность через систему Антиплагиат; помогу повысить уникальность текста готовой работы. Возможно выполнение работ частично.