На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
$$4 sin^{3}{left (x right )} + 1 = 4 sin^{2}{left (x right )} + sin{left (x right )}$$
преобразуем
$$4 sin^{3}{left (x right )} – 4 sin^{2}{left (x right )} – sin{left (x right )} + 1 = 0$$
$$- 4 sin^{2}{left (x right )} – sin{left (x right )} + 4 sin^{3}{left (x right )} + 1 = 0$$
Сделаем замену
$$w = sin{left (x right )}$$
Дано уравнение:
$$4 w^{3} – 4 w^{2} – w + 1 = 0$$
преобразуем
$$- w + – 4 w^{2} + 4 w^{3} – 4 + 4 + 1 = 0$$
или
$$- w + – 4 w^{2} + 4 w^{3} – 4 – -4 + 1 = 0$$
$$- w – 1 + – 4 left(w^{2} – 1right) + 4 left(w^{3} – 1right) = 0$$
$$- w – 1 + – 4 left(w – 1right) left(w + 1right) + 4 left(w – 1right) left(w^{2} + w + 1^{2}right) = 0$$
Вынесем общий множитель -1 + w за скобки
получим:
$$left(w – 1right) left(- 4 left(w + 1right) + 4 left(w^{2} + w + 1^{2}right) – 1right) = 0$$
или
$$left(w – 1right) left(4 w^{2} – 1right) = 0$$
тогда:
$$w_{1} = 1$$
и также
получаем ур-ние
$$4 w^{2} – 1 = 0$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{2} = frac{sqrt{D} – b}{2 a}$$
$$w_{3} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 4$$
$$b = 0$$
$$c = -1$$
, то
D = b^2 – 4 * a * c =
(0)^2 – 4 * (4) * (-1) = 16
Т.к. D > 0, то уравнение имеет два корня.
w2 = (-b + sqrt(D)) / (2*a)
w3 = (-b – sqrt(D)) / (2*a)
или
$$w_{2} = frac{1}{2}$$
$$w_{3} = – frac{1}{2}$$
Получаем окончательный ответ для 4*sin(x)^3 + 1 – 4*sin(x)^2 – sin(x) = 0:
$$w_{1} = 1$$
$$w_{2} = frac{1}{2}$$
$$w_{3} = – frac{1}{2}$$
делаем обратную замену
$$sin{left (x right )} = w$$
Дано уравнение
$$sin{left (x right )} = w$$
– это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 pi n + {asin}{left (w right )}$$
$$x = 2 pi n – {asin}{left (w right )} + pi$$
Или
$$x = 2 pi n + {asin}{left (w right )}$$
$$x = 2 pi n – {asin}{left (w right )} + pi$$
, где n – любое целое число
подставляем w:
$$x_{1} = 2 pi n + {asin}{left (w_{1} right )}$$
$$x_{1} = 2 pi n + {asin}{left (1 right )}$$
$$x_{1} = 2 pi n + frac{pi}{2}$$
$$x_{2} = 2 pi n + {asin}{left (w_{2} right )}$$
$$x_{2} = 2 pi n + {asin}{left (frac{1}{2} right )}$$
$$x_{2} = 2 pi n + frac{pi}{6}$$
$$x_{3} = 2 pi n + {asin}{left (w_{3} right )}$$
$$x_{3} = 2 pi n + {asin}{left (- frac{1}{2} right )}$$
$$x_{3} = 2 pi n – frac{pi}{6}$$
$$x_{4} = 2 pi n – {asin}{left (w_{1} right )} + pi$$
$$x_{4} = 2 pi n – {asin}{left (1 right )} + pi$$
$$x_{4} = 2 pi n + frac{pi}{2}$$
$$x_{5} = 2 pi n – {asin}{left (w_{2} right )} + pi$$
$$x_{5} = 2 pi n – {asin}{left (frac{1}{2} right )} + pi$$
$$x_{5} = 2 pi n + frac{5 pi}{6}$$
$$x_{6} = 2 pi n – {asin}{left (w_{3} right )} + pi$$
$$x_{6} = 2 pi n – {asin}{left (- frac{1}{2} right )} + pi$$
$$x_{6} = 2 pi n + frac{7 pi}{6}$$
-pi
x1 = —-
6
pi
x2 = —
6
pi
x3 = —
2
5*pi
x4 = —-
6
7*pi
x5 = —-
6
x1 = 58.1194642274000
x2 = -100.007366139000
x3 = 71.7330322570000
x4 = 41.3643032723000
x5 = 88.4881930761000
x6 = 20.4203521593000
x7 = -69.6386371546000
x8 = -5.75958653158000
x9 = -60.2138591938000
x10 = 89.5353903729000
x11 = -43.4586983747000
x12 = -71.7330322570000
x13 = 47.6474885794000
x14 = 89.5353905748000
x15 = 34.0339204139000
x16 = 95.8185760401000
x17 = -12.0427718388000
x18 = 21.4675497995000
x19 = 31.9395253115000
x20 = 18.3259571459000
x21 = -13.0899693900000
x22 = -47.6474885794000
x23 = 0.523598775598000
x24 = -31.9395253115000
x25 = -25.6563400043000
x26 = -75.9218224618000
x27 = -38.2227106187000
x28 = -23.5619449966000
x29 = -40.3171057211000
x30 = 62.3082542962000
x31 = 14.1371670702000
x32 = 7.85398172873000
x33 = -15800.6402513000
x34 = 5.75958653158000
x35 = -80.1106125862000
x36 = -86.3937979377000
x37 = 66.4970445010000
x38 = 97.9129710369000
x39 = 75.9218224618000
x40 = -16.2315620435000
x41 = 12.0427718388000
x42 = 1.57079624161000
x43 = -34.0339204139000
x44 = -97.9129710369000
x45 = 91.6297857297000
x46 = -2.61799387799000
x47 = 78.0162175641000
x48 = -91.6297857297000
x49 = -67.5442421518000
x50 = 16.2315620435000
x51 = 100.007366139000
x52 = 84.2994028713000
x53 = -49.7418836818000
x54 = -93.7241808321000
x55 = -105.243354121000
x56 = -42.4115008333000
x57 = 9.94837673637000
x58 = -90.5825881785000
x59 = -46.6002910282000
x60 = -63.3554518474000
x61 = -87.4409955249000
x62 = 51.8362788848000
x63 = 68.5914396034000
x64 = -56.0250689890000
x65 = 56.0250689890000
x66 = -82.2050077689000
x67 = -757.647428291000
x68 = -57.0722665402000
x69 = 85.3466004225000
x70 = 30.8923277603000
x71 = 53.9306738866000
x72 = 24.6091424531000
x73 = -9.94837673637000
x74 = 82.2050077689000
x75 = 74.8746249106000
x76 = 45.5530932702000
x77 = 44.5058959259000
x78 = -78.0162175641000
x79 = -23.5619448325000
x80 = 38.2227106187000
x81 = 70.6858348307000
x82 = 40.3171057211000
x83 = -36.1283154283000
x84 = -84.2994028713000
x85 = -53.9306738866000
x86 = 102.101761340000
x87 = 26.7035378190000
x88 = -3.66519142919000
x89 = -29.8451301005000
x90 = 64.4026493159000
x91 = -27.7507351067000
x92 = 3.66519142919000
x93 = 27.7507351067000
x94 = 60.2138591938000
x95 = -19.3731546971000
x96 = -73.8274272809000