Дано

$$sqrt{- x + 6} = – x$$
Подробное решение
Дано уравнение
$$sqrt{- x + 6} = – x$$
$$sqrt{- x + 6} = – x$$
Возведём обе части ур-ния в(о) 2-ую степень
$$- x + 6 = x^{2}$$
$$- x + 6 = x^{2}$$
Перенесём правую часть уравнения левую часть уравнения со знаком минус
$$- x^{2} – x + 6 = 0$$
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = -1$$
$$b = -1$$
$$c = 6$$
, то

D = b^2 – 4 * a * c =

(-1)^2 – 4 * (-1) * (6) = 25

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = -3$$
$$x_{2} = 2$$

Т.к.
$$sqrt{- x + 6} = – x$$
и
$$sqrt{- x + 6} geq 0$$
то

-x >= 0

или
$$x leq 0$$
$$-infty < x$$
Тогда, окончательный ответ:
$$x_{1} = -3$$

Ответ
$$x_{1} = -3$$
Численный ответ

x1 = -3.00000000000000

   
4.78
Валерия1525
Профессиональные навыки: • Опыт работы с молодежью • Ответственный исполнитель • Умение решать поставленные задачи • Способность прогнозировать события, "просчитывать" возможные последствия принимаемых решений • Присущи лидерские качест