Дано

$$x^{2} – x – 90 = 0$$
Подробное решение
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = 1$$
$$b = -1$$
$$c = -90$$
, то

D = b^2 – 4 * a * c =

(-1)^2 – 4 * (1) * (-90) = 361

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = 10$$
$$x_{2} = -9$$

Ответ
$$x_{1} = -9$$

x2 = 10

$$x_{2} = 10$$
Численный ответ

x1 = 10.0000000000000

x2 = -9.00000000000000

Читайте также  sin(x)=-1/4
   
5.0
Kesha91
На данном сайте недавно, однако имею опыт написания работ (рефераты,эссе, статьи, курсовые и дипломные работы, решение задач и др.) с 2011 года. Выполняю работы оригинальностью более 70% (не техническая)