На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Анализ парной корреляции

Вариант 10

В таблице 1 приведены данные о величине личного дохода и о десяти видах потребительских расходов населения США за период 1959 – 1983 гг. Каждая переменная, приведена в млрд. долл. США.
Провести анализ парной корреляции между величиной дохода (факторная переменная) и величиной потребительского расхода (результирующая переменная).
Разработать уравнение линейной регрессии потребительского расхода на величину личного дохода.
Провести анализ адекватности полученной модели.
Представить соответствующие графики.
Примечание: при проверке гипотез о значимости коэффициента корреляции, значимости коэффициентов регрессии и построении доверительных интервалов для перечисленных коэффициентов принимать доверительную вероятность равной .
Таблица 1- Исходные данные для выполнения корреляционо-регрессионного анализа
Год Личный доход Потребительские раходы населения США, млрд. долл
Мед. Услуги

1959 544,9 8,8
1960 559,7 9
1961 575,4 9,1
1962 602 9,8
1963 622,9 10,2
1964 658 11,9
1965 700,4 12,1
1966 740,6 12,1
1967 774,4 12,5
1968 816,2 12,8
1969 853,5 13,6
1970 876,8 14,4
1971 900 14,8
1972 951,4 15,7
1973 1007,9 16,9
1974 1004,8 17,2
1975 1010,8 17,8
1976 1056,2 18
1977 1105,4 19,2
1978 1162,3 18,6
1979 1200,7 20,1
1980 1209,5 21,5
1981 1248,6 22
1982 1254,4 22,4
1983 1284,6 23,3

На странице представлен фрагмент работы. Его можно использовать, как базу для подготовки.

Часть выполненной работы

Выберем уровень значимости и рассчитаем значение величины

По таблице значений критических точек распределения Стьюдента (Приложение 1) при 23 степенях свободы (25 -2) и уровне значимости находим значение . Следовательно, рассчитанное значение коэффициента корреляции не может быть объяснено только случайными причинами и связь необходимо признать значимой.
Рассчитаем – й доверительный интервал для коэффициента корреляции в генеральной совокупности значений факторного и результирующего признаков:

Таким образом, интервал 0,984 – 0,999 с вероятностью 95% содержит в себе значение коэффициента корреляции в генеральной совокупности значений факторного и результирующего признака.

Регрессионный анализ
Разработаем уравнение линейной регрессии расходов на медицинские услуги на величину личного дохода по данным рассматриваемого примера. Для проведения расчетов сформируем вспомогательную таблицу 4.

Таблица 4 – Вспомогательная таблица для разработки уравнения линейной регрессии
№ x y x2 xy
e E2
1 544,9 8,8 296916,0 4795,1 8,6 0,19 0,03 8,2 9,1
2 559,7 9,0 313264,1 5037,3 8,9 0,11 0,01 8,4 9,3
3 575,4 9,1 331085,2 5236,1 9,2 -0,08 0,01 8,7 9,6
4 602,0 9,8 362404,0 5899,6 9,7 0,13 0,02 9,3 10,1
5 622,9 10,2 388004,4 6353,6 10,1 0,14 0,02 9,7 10,5
6 658,0 11,9 432964,0 7830,2 10,7 1,19 1,42 10,3 11,1
7 700,4 12,1 490560,2 8474,8 11,5 0,61 0,37 11,2 11,8
8 740,6 12,1 548488,4 8961,3 12,2 -0,14 0,02 11,9 12,5
9 774,4 12,5 599695,4 9680,0 12,9 -0,36 0,13 12,6 13,2
10 816,2 12,8 666182,4 10447,4 13,6 -0,84 0,70 13,4 13,9
11 853,5 13,6 728462,3 11607,6 14,3 -0,73 0,53 14,1 14,6
12 876,8 14,4 768778,2 12625,9 14,8 -0,36 0,13 14,5 15,0
13 900,0 14,8 810000,0 13320,0 15,2 -0,39 0,15 14,9 15,4…

   

Купить уже готовую работу

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
5.0
cyrusbeene
Рефераты, доклады, презентации, курсовые, контрольные, дипломные работы, решения задач, эссе, сочинения, повышение оригинальности текста, исправление оформления по методичке или ГОСТ, составление планов ВКР и др.