На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$x + y = 3897$$

x – y = 35

$$x – y = 35$$
Подробное решение
Дана система ур-ний
$$x + y = 3897$$
$$x – y = 35$$

Из 1-го ур-ния выразим x
$$x + y = 3897$$
Перенесем слагаемое с переменной y из левой части в правую со сменой знака
$$x = – y + 3897$$
$$x = – y + 3897$$
Подставим найденное x в 2-е ур-ние
$$x – y = 35$$
Получим:
$$- y + – y + 3897 = 35$$
$$- 2 y + 3897 = 35$$
Перенесем свободное слагаемое 3897 из левой части в правую со сменой знака
$$- 2 y = -3862$$
$$- 2 y = -3862$$
Разделим обе части ур-ния на множитель при y
$$frac{1}{-2} left(-1 cdot 2 yright) = 1931$$
$$y = 1931$$
Т.к.
$$x = – y + 3897$$
то
$$x = – 1931 + 3897$$
$$x = 1966$$

Ответ:
$$x = 1966$$
$$y = 1931$$

Ответ
$$x_{1} = 1966$$
=
$$1966$$
=

1966

$$y_{1} = 1931$$
=
$$1931$$
=

1931

Метод Крамера
$$x + y = 3897$$
$$x – y = 35$$

Приведём систему ур-ний к каноническому виду
$$x + y = 3897$$
$$x – y = 35$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}x_{1} + x_{2}x_{1} – x_{2}end{matrix}right] = left[begin{matrix}389735end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}1 & 11 & -1end{matrix}right] right )} = -2$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = – frac{1}{2} {det}{left (left[begin{matrix}3897 & 135 & -1end{matrix}right] right )} = 1966$$
$$x_{2} = – frac{1}{2} {det}{left (left[begin{matrix}1 & 38971 & 35end{matrix}right] right )} = 1931$$

Метод Гаусса
Дана система ур-ний
$$x + y = 3897$$
$$x – y = 35$$

Приведём систему ур-ний к каноническому виду
$$x + y = 3897$$
$$x – y = 35$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}1 & 1 & 38971 & -1 & 35end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}11end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}1 & 1 & 3897end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}0 & -2 & -3862end{matrix}right] = left[begin{matrix}0 & -2 & -3862end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 1 & 3897 & -2 & -3862end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}1 -2end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & -2 & -3862end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}1 & 0 & 1966end{matrix}right] = left[begin{matrix}1 & 0 & 1966end{matrix}right]$$
получаем
$$left[begin{matrix}1 & 0 & 1966 & -2 & -3862end{matrix}right]$$

Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$x_{1} – 1966 = 0$$
$$- 2 x_{2} + 3862 = 0$$
Получаем ответ:
$$x_{1} = 1966$$
$$x_{2} = 1931$$

Численный ответ

x1 = 1966.00000000000
y1 = 1931.00000000000

   
5.0
AndyFit
Имею экономическое (бух. учет) и юридическое образование. Специализируюсь по написанию курсовых работ, рефератов по экономике (в частности бух. учет, финансы и кредит, банковское дело). Решаю контрольные работы по бух. учету, праву и др